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1. Introduction

The mathematical formulation of the engineering optimization problem is

rain Y(lx})

subject to g_(Ix})<0, i=l,q

(1)

where

{x} is an nxl matrix of design variables,

f({x}) is the objective function, and

gi({x}) are constraint equations.

Evaluation of the objective function and constraint equations in Equation (1) can be very

expensive in a computational sense. Thus, it is desirable to use as few evaluations as

possible in obtaining its solution. In solving Equation (1), one approach is to develop

approximations to the objective function and/or restraint equations and then to solve

Equation (1) using these approximations in place of the original functions. These

approximations are referred to as response surfaces.

The desirability of using response surfaces depends upon the number of functional

evaluations required to build the response surfaces compared to the number required in the

direct solution of Equation (1) without approximations. The present study is concerned with

evaluating the performance of response surfaces so that a decision can be made as to their

effectiveness in optimization applications. In particular, this study focuses on how the



quality of approximations is effected by designselection.

neural net approximations are considered.

Polynomial approximations and

To provide the groundwork for future discussion,this introductory section discusses:

1. measuresof quality of fit at the designsand measuresof quality of fit over a region of

interest and

2. the methodology used to build the approximations.

1.1 Quality of Fit

Let us consider a problem with n design variables, the components of the vector {x} = {x1,

x2,...x_} t. A total of N designs will be considered: {x}j, j = 1,N. At the designs {x}j, let

yj = the value of the function to be approximated and

_j = the value of the approximating function.

The approximating function, _, should closely match the function, y, not only at the designs,

{x} i, but over the entire region of interest.

1.1.1 Fit at the designs

The approximating function _ closely approximates the function y when s is small where

(2)

and where 62 is the sum of the squares of the residuals thus

2



N

82=T__i-_i)2
I

Let _ be the average value of the designs, Yi. Thus

(3)

N

1

N

(4)

In this study, one measure of the closeness of fit to be considered is the non-dimensional

value v where

I N

7-,(y,-_l)_
1

N
V=

Y

• I00

(5)

The coefficient v is the non-dimensional root mean square (RMS) error at the designs.

Thus, v = 0 is a necessary and sufficient condition that the approximating function fit the

actual function at the N design points.

1,1,2 Overall fit

Just because the approximating function exactly fits the function at N designs does not

guarantee that it gives a good fit over the region of interest. It is therefore desirable over

the region of interest to have a measure of the quality of overall fit. Several examples of

this study considers a two dimensional region of interest. For these problems, the



rectangular region of interest is overlaid with a 31x31evenly spacedgrid of points. The

value of the function and the approximating function is then compared at theseNG =961

evenly spacedgrid of points. Other examplesconsidera rectangular n dimensional region

of interest. These regions of interest are also overlaid with a evenly spacedgrid of points.

The value of the function and the approximating function are then compared at theseNG

grid points. For theseexamples,a measureof the quality of overall fit is taken as

VG=

NG
E(yi-yi)2/N¢7
1

y_

• I00
(6)

where .Yo is the average value of y at the grid points. A small value of vo indicates that the

approximating function did a good job of approximation over the region of interest.

1.2. Polynomial Appr0ximations

With the polynomial response surface approach, the approximating function is taken as an

m=k+ 1 term polynomial expression [1-3] thus

:=bo+blX1+...bkXk (7)

where Xj is some expression involving the design variables. For example, a second order

polynomial approximation in two variables could be of the form

4



2 2
=bo + blx 1 + b2x 2 + b3x I + b4XlX 2 + bj_ (8)

The value of the function to be approximated at the N designs can be used to determine the

m=k+ 1 undetermined coefficients in the polynomial expression. For the N designs,

Equation (7) yields

Yl 1 Xl, ... Xk,

1 Xl, ... X_

.,. oo, o.o io.

1 Xlx ... Xkg

bo

bt

Q,

(9)

or

iy}=[Z]lb} (I0)

where {Y} is an Nxl matrix, [Z] is an Nxm matrix, and {b} is an mxl matrix.

1.2.1 Exactly-determined approximation

When N = rn, the approximation is exactly-determined and the matrix {b} can be determined

from Equation (10).

12.2 Over-determined approximation

With N > m, Equation (10) can be solved in a least squares sense thus [1-3]

5



or

[z]'{ Y}=[zl'[z] {t,}
(11)

{b} =([Z]'[ZD-:[Z]'{Y} (12)

Equation (12) in effect, chooses the terms of {b} so as to minimize the square of the

residual as defined in Equation (2).

1.2.3 Under-determined approximation

When N<m, the approximation is under-determined. A solution can be obtained by

choosing the terms of {b} so as to minimize the square of the residual as defined in

Equation (2). However, a direct solution can be obtained by using the concept of pseudo-

inverse [4,5]. Assume that the rank of matrix [Z] is N and define the pseudo-inverse of

matrix Z, Z" thus

[z]*--[Zl'([Zl[Z]9-I (13)

where t denotes transpose. Solution of Equation (10) is then

Ib}=[z]" !YI +[Q]Iw} (14)



where {w} is an (m-N) column matrix of arbitrary coefficients and [Q] is a mx(m-N) matrix

formed from any m-N independent columns of the matrix [R] thus

[R]=[IJ-(Z]'(Z] (15)

One solution to Equation (14) is to take all the arbitrary terms of {w} as zero giving

{b}=(Z]'{Y} (16)

The basic solution to Equation (10) is Equation (16). Using that equation, at the designs,

{x}j, the value of 27j matches the value of Yr If w i is the ith term in matrix {w} and {q}i is

the ith column of matrix [Q], then at the designs, {x}j, _j = 0 when

{b] =wi{q| _ (17)

Thus, the last term of the right hand side of Equation (14) gives _>jvalues which match yj

at the designs, {x}j, for any values of w i.

1.3 Artificial Neural Nets

While the initial motivation for developing artificial neural nets was to develop computer

models that could imitate certain brain functions, neural nets can be thought of as another

way of developing a response surface. Different types of neural nets are available [6,7], but

the type of neural nets considered in this paper are back propagation nets with one hidden

layer as shown in Figure 1. This type of neural net has been used previously to develop



response surfaces [8-12] and is capable, with enough nodes on the

approximating any continuous function [13].

hidden layer, of

For the neural net of Figure 1, associated with each node on the hidden layer, node j, and

each output node, node k, are coefficients or weights, 0j and Ok, respectively. These weights

are referred to as the biases. Associated with each path, from an input node i to node j on

the hidden layer, is an associated weight, wii and from node j on the hidden layer to output

node k is an associated weight Wik. Let ch be inputs entered at node i. Node j on the

hidden layer receives weighted inputs, wijch. It sums these inputs and uses an activation

function to yield an output rr The activation function considered in this paper is the

sigrnoid function [6,7]

1

rf -r_d,-oj (18)
l+e

Output node k then receives inputs Wikrj which are summed and used with an activation

function to yield an output sk. Some variation of the delta-error back propagation algorithm

[6,7] is then used to adjust the weights on each learning try so as to reduce the values

between the predicted and desired outputs. In this investigation, studies were performed

using the program NEWNET [14] which was developed especially for this investigation.

NEWNET minimizes the sum of the squares of the residuals in Equation (2) with respect

to the weights and biases of the net. Training of the net is thus formulated as an

unconstrained minimization problem. Solution of this minimization problem is performed

8



using the method of Davidon, Fletcher, and Powell [15-16]. That algorithm performs a

series of one dimensional searches along search directions. Search directions are

determined by building an approximation to the inverse Hessian matrix using gradient

information. Gradients required by that algorithm are obtained using back-propagation.

One-dimensional searches are performed along the search directions using an interval

shortening routine.

9



2. Levels of Designs

2.1 Taylor Series Approximation

The overriding factor which affects the accuracy of an approximation is the levels of the

design parameters considered. It is instructive to consider a problem in two design

variables. Suppose we wish to make a quadratic approximation of a function thus:

2 2
y--bo+blxI+b2x2+b3x I +b,txlx2 +byr_ ...

(19)

Consider that the exact function is evaluated at 6 design points and the information thus

generated will be used to determine the 6 undetermined coefficients in Equation (19).

Design variables at these design points are taken from the following sets:

x 1 from the set {xll xlz...Xxp}

x 2 from the set {x21 x22...x2q}

(20)

Here p discrete values are considered for x 1 and q discrete values are considered for x 2.

The variable x 1 is said to have p levels and x2 is said to have q levels. The problem is to

determine the minimum levels of the design variables, p and q, required to build the

quadratic approximation. In this regard, it is instructive to consider a Taylor series

approximation [17] of the function about the point {xl=0, x2--0}:

:=y(O,O)+ {vy(O,O)}'{4x}+ {4x}'[H(O,O)]{a.x}+...
(21)

10



where

{_x}=[(x1-o)(x2-O)l'=[x1x21' (22)

17(0,0) }=[(_(°'°) _7(o,o)1,
Ox1 Ox2

(23)

[H(0,0)]--

_y(0,0) 0y2(0,0)

0y2(0,0) 02y(0,0)
Oxtax2 ax2

(24)

Entering Equations (22), (23), and (24) into Equation (21) gives

y=_o,o)+ _(°'°)x _ _(o,o)_, _y(o,O)x_÷
'

2 _(°'°).x_ o_o,O)x_
axlx2 _ "

(25)

The derivatives in Equation (25) can be determined by finite difference equations [18]. The

second derivative of y with respect to x 1 can be obtained using information at points

indicated in Figure 2 by solid circles, the second derivative of y with respect to x 2 can be

11



obtained using information at points indicated by unfilled circles,and the mixed derivative

can be obtained using information at points indicated by unfilled squares.

It can be seenin Figure 2 that at least three levelsof both x1and x2must be used to obtain

a quadratic approximation. If three levelsare not provided, not information is available to

calculate the higher derivatives in Equation (25). A complete 3 factorial designdoes not

have to be used--only 6 selectedpoints from the complete 3 factorial design. Information

at those 6 points allow the undetermined coefficients to be exactlydetermined.

Consider now the designof Figure 3 which arealso taken from the 3 factorial design. Even

though 6 designpoints are used,this set of designpoints doesnot allow an approximation

containing the x22term of Equation (25). However, with the design of Figure 3, an

approximation of the form of Equation (26) could be obtained thus:

2
y=b ,,+blx 1+bzx2+b_l +b_lx 2

(26)

With the design of Figure 3, if a solution is attempted using Equations (19) and (12), a

singular coefficient matrix will be encountered. A solution could be attempted using the

pseudo-inverse concept of Equations (13) and (14). However, recent studies [19] have

shown that non-unique solutions are obtained with this technique. Non-uniqueness makes

these solutions undesirable. Using Equations (26) and (12), a slightly over-determined

approximation is obtained.

12



Recent studies have found that the numerical performance of neural network

approximations and polynomial approximations with the same number of associated

undetermined parameters is comparable [19]. Thus, it is not expected that neural nets as

approximators will perform better than polynomials when there are inadequacies in the

training design, as in Figure 3. The next example investigates performance of both

polynomial and neural net approximations.

2.2 Example

Consider the function

2 2 2
y=I+xI+x2+x3+xI+xlx2+xlx3+x.2+x2x3+x3

(27)

In the first phase of the investigation, approximations are to be made of this function using

the design of Figure 4. The star pattern of design points in Figure 4 does not allow mixed

derivatives of the function to be calculated using finite difference type formulae but does

permit the other second derivatives to be calculated. Thus, information is available to make

a polynomial approximation of the form

. 2 2 2
Y=b o+btxx +b2x2 +b3x3 +b4xx +byr.2 +b_s

(28)

The function y was evaluated at the design points shown in Figure 4 yielding 7 training pairs

for calculating the 7 undetermined parameters in Equation (28). The value of the

approximating function _ was then evaluated at a 5x5x5 grid of designs. These values of

13



were then usedto evaluatevc from Equation (6). The value of v6 obtained is shownin the

first line of Table 2.1.

Table 2.1. Performanceof Approximations for Various Designs

Number
Designs
Points

7

12

10

27

125

Description

Star--see
Figure 4

Star--see

Figure 5

Computer
Generated

3 factorial

5 factorial

Polynomial

Approximation

No. v G (%)
Para.

7 34.6

7 34.6

10 0.0

10 0.0

10 0.0

Neural Net

Approximation

ih No.

Para.

11

11

2 11

3 16

3 16

4 21

8 41

No. vc (%)
Apx.

10 25.5-97.3

10 32.9-93.5

10 36.6-36.9

10 21.9-36.7

2 16.6-16.7

2 16.6-16.9

1 3.7

A neural net approximation was then considered. Previous studies [19] have indicated that

it is desirable to have more training pairs than the number of undetermined parameters

(weights and biases) associated with the net. If fewer training pairs than undetermined

parameters are used, non-unique approximations should be expected. For a neural net with

one hidden layer as shown in Figure 1, there are 6 parameters associated with a net with

one node on the hidden layer and 11 parameters associated with a net with two nodes on

the hidden layer. It was considered that one node on the hidden layer would yield an

inadequate approximation. Thus 2 nodes on the hidden layer were considered. Thus, the

14



neural net approximation is under-determined. That is to say that there are fewer training

pairs than there are undetermined parameters associated with the approximation. Non-

unique approximations are to be expected. Indeed, this was the case. The 8 training pairs

were used to make 10 different approximations by having training commence from a

different randomly selected set of weights and biases. Once the nets were trained, the value

of the approximating function, 9, was generated at the 5x5x5 set one grid points and the

value of vG was developed. The range of the values obtained is shown in Table 2.1. One

can see that a large range of values is obtained. The best neural net approximation is only

slightly better than the polynomial approximation while the worst neural net approximation

is considerably worse. Just as with the polynomial approximation, the designs used to train

the approximation can not yield information necessary to capture essential features of the

function to be approximated.

The 12 designs of Figure 5 were next used in the training of a polynomial approximation

and a 2 node neural net approximation. Even though more designs are used here than in

Figure 4, the additional designs selected do not yield any more information about the nature

of the function being approximated. Information is still not available for determining the

mixed derivatives of the function to be approximated. Thus, the polynomial approximation

of Equation (26) was considered. As there are now more training pairs than there are

undetermined parameters, the approximation obtained is over-determined. As no new

information is available with the 12 designs, the same polynomial approximation and thus

15



the samevGas before are obtained.

2.1.

The value of vC is shown in the second line of Table

A neural net with 2 nodes on the hidden layer was then trained with the 12 training pairs.

The net was trained 10 times starting from different randomly selected sets of weights and

biases. Even thought the number of training pairs, 12, is greater than the number of

undetermined parameters associated with the net, 11, non-unique approximations were

obtained as can be seen in Table 2.1. Thus, it can be concluded that for neural net

approximations, having more training pairs than the number of associated undetermined

parameters is only a necessary condition for obtaining a unique approximation but that it

is not a sufficient condition. As the 12 designs offered no new information about the

function being approximated over that offered by the 8 designs, then just as with the 8

design case, non-unique approximations were obtained.

The program DESIGNS [20], which was developed for this project, was used to generate 10

designs which contain the information necessary for calculating the 10 undetermined

coefficients of the complete quadratic approximation of the form:

2 2 2
y=bo+blx 1+b2x2+b3x3 +b4xl +byr,.2+b6x 3 +bTxtx2+b_xlx3+b_z,x 3

(29)

The location of these design points is shown in Figure 6. The polynomial approximation

obtained by training the polynomial of Equation (29) with the computer generated designs

exactly duplicated the test function of Equation (27). Thus, vG for the 5x5x5 grid of points

16



waszero asseen in the third line of Table 2.1.

A neural net with 2 nodeson the hidden layer with 6 associatedundetermined parameters

and a neural net with 3 nodes on the hidden layer and 11 associated undetermined

parameters were then trained 10 times with the computer generated training pairs. Each

training started from a different randomly selectedset of weights and biases. For the case

of 2 nodeson the hidden layer, the approximation generatedwas over-determined and a

unique approximation wasobtained (the small rangeof vCobtained most likely results from

the exit criteria employedin the training algorithm). For the caseof 3 nodeson the hidden

layer, there are 11associatedundetermined parametersbut only 10training pairs. Thus the

approximation is under-determined and a non unique approximation is obtained as canbe

seenin Table 2.1.

The performance of the neural net approximations was much poorer than that of the

polynomial approximation on this problem. This poorer performance may be in part

because the problem is biased towards the polynomial approximation as the function being

approximated is 2 second order polynomial.

A complete 3 3 factorial design and a 53 factorial design were considered to see if good

results could be obtained with the neural nets if more training pairs were employed. Indeed

this was the case. However, many more training pairs were required to get a good

approximation than were required with the polynomial approximation. The extra training

17



pairs were wasted on the polynomial approximation. Ten correctly selectedtraining pairs

is all that is required to get an exact secondorder approximation. The additional training

pairs offered no new information to the polynomial approximation. The coefficient vGwas

zero for training pairs using the 3 and 5 factorial designsand a secondorder polynomial

approximation.

2,3 Conclusion

For a given order of approximation, a good design must use an adequate number of levels

of the design variables or a poor approximation will be obtained. Likewise, design points

must be located so that information is available for determining all of the undetermined

coefficients of the approximating function. In many instances, especially when the region

of interest is small, a second order polynomial approximation or neural net equivalent will

be sufficient to build a response surface. A second order approximation requires a design

containing 3 levels of the design variables. Program DESIGNS has been developed to

generate a minimum point design which allows all of the coefficients of a second order

polynomial approximating function to be obtained. This minimum point design can be

augmented by randomly selected design points or by user selected points.

18



3. Standard Designs

3.1 Underlying Principle

When making a polynomial approximation of a function, the number of design levels

required for each design variable depends upon the order of polynomial approximation

being used. Consider for example the problem of approximating a function y, a function of

one design variable. As previously discussed, two levels of the design variable would be

required to make a linear approximation of the function, three levels of the design variable

would be required to make a second order approximation, four levels of the design variable

would be required to make a 3rd order approximation, etc. If y is a function of r design

variables, a pth order polynomial approximation,_, requires designs at p + 1 levels in each

design variable.

In response surface methodology, the term factor is used for design variable. A factorial

des_g_ or factorial experiment is a design in which one uses each of the possible

combinations of the levels of each factor. If m is the number of level of each factor and r

is the number of factors, then the design would be referred to as a m r factorial experiment.

Table 3.1 gives the number of designs in various factorial experiments.

19



Table 3.1. Number of designsin a full factorial design

m = level 2 3 4
r=factor

2 4 9 16

3 8 27 64

4 16 81 256

10 1024 59049 1.05E06

One canseethat evenfor a smallnumber of factors, completefactorial experimentsbecome

impractical if designsare computationally or experimentallyexpensiveto obtain. One then

is forced to usesomesub-setof the factorial designor alternate designscontaining requiring

fewer designpoints. Conceptsfrom statisticsare normally usedin selectinga sub-setof the

factorial designor in developing alternate designs. Thus statistical conceptsare reviewed.

3.2 Statistical Concepts

When making an approximation, _, of a function, y, most approaches used to select design

points for a design consider that

1. polynomial approximations are employed and

2. the value of the function, y_, determined at the designs, {x}_, contains some error, el.

20



A measure of the error at point i is the variance of the error, var(Ei)=a 2 where

(3O)

where

is the true mean of all possible observations of Yi and

n is the number of observations made.

In experimental investigations, e_ is experimental error. When making approximations to

analytical functions, Ei is zero and the variance of the error at point i is zero. Often

approximations are made to a function whose values must be obtained from some numerical

algorithm such as the finite element method or finite difference method. Values of Yi

obtained from such algorithms depend on control parameters which dictate the level of

accuracy of the solution. For example, if y was a stress determined from a finite element

analysis, then y could depend on a control parameter which specifies the coarseness of the

finite element idealization. In this case, different values of yi would be obtained for the ith

design for different values of the control parameters and E_ could be thought of as a

numerical error.

It would be an interesting study to select designs such that approximations developed are

insensitive to numerical errors such as finite element idealization error. However, the

problem at hand is to find a good approximation to an analytical function or a good

21



approximation for output from a deterministic model. For the problem at hand, for a given

design,x_,one obtains the samefunctional value,Yi, no matter how many times the function

is evaluated. Thus, the problems considered in this report contain no numerical error.

However, as all known algorithms with one exception [21] consider that there is some

experimental or numerical error, this section now further examines this case.

Errors in the value of y_ used to build an approximation affect the estimation of the

undetermined coefficients, bj, in the polynomial approximation and thus affect Yi, the values

of Yipredicted by the approximation. A measure of the error in bj resulting from errors in

y_ is the variance of bj. For example, consider that Yi is obtained from a finite element

analysis and that a pth order polynomial approximation is employed. The undetermined

coefficients in that approximations, bj, can be determined from Equation (12). If a number

of approximations were now made with finite element results, obtained using different

idealizations, the coefficient bj for these approximations would be different. The variance

of bj is a measure of how much the b's change for these different approximations. In like

form, the different approximations yield different _i and the variance of Yi is a measure of

how much the Yi values change from approximation to approximation.

From a numerical standpoint, it is desirable to have approximations that are not highly

sensitive to the error ei- Approximations are insensitive to the error, Ei, if the variance of

bj and the variance of 8i is small. Most design selection algorithms currently in use attempt

in some way to keep these variances small.
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The variance of b i is the j,j term of the variance-covariance matrix cov b where (see

Equation 3.11 of [3] or Equation 2.8 of [2])

[covb]=o2([Zl'[Z])-1 (31)

and the variance of #i is given by (see Equation 2.11 of [2])

vat _i= o 2 {Zi ] t([Z]t[Z]) -1 {Z i} (32)

where {Zi} t is the lxp vector whose elements correspond to the elements of a row of matrix

[Z].

Notice that these variance involve the matrix [H] where

[HI =([Z],[Z])-1 (33)

Design selection affects [Z], which from Equation (33) affects [H], which in turn affects the

variances of bj and _i. Many design point selection algorithms attempt to select designs

which give an [H] matrix which will keep the variances of bj and Yi small.

3.30rthogonal Designs

The associated undetermined coefficients of a polynomial approximation function can be

found from Equation (12). The solution for these coefficients involve the matrix [Z] (see

Equations (9) and (10)). Let {Zi} be the ith column of matrix [Z]. A design is said to be
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orthogonal if the columnsof the [Z] matrix are orthogonal, i.e. {Zi}t{Zj} = 0, i#j. There are

interesting properties of orthogonal designs which have prompted there use. Thus

orthogonal designs will now to presented in some detail.

3.3.1 Scaling

The discussion of orthogonality is simplified by working with scaled variables. Consider that

the approximation in question involves k unscaled design variables _q and contains N design

points. Instead of working with _, the variables will be scaled. Let _qu be the uth level of

unscaled variable i and x_u be the scaled level. The desired scaling is

hr
2

__, xi,=N, i=l,k (34)

/¢

_ xu,=0, i=l,k (35)
u-I

This scaling can be accomplished by having

(36)

where

and

2j=the average of the levelsof
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g--E
u=l 1_

With this scaling, N experimental design points of the orthogonal design give

(38)

[Zl'[Z]=N[tl (39)

([Z]'[Z])-l=lffl (40)

where [I] is the identity matrix.

3.3.1.1 Example of Scaled Designs:

Consider a 2 factorial design with levels of 4 and -4. For that design

_1=0, _2=0 (41)

- and

2 2 (4-0)2+(-4-0) 2
S 1 =S_ =

2
or 51=52=4

(42)

From Equation (3), the levels of the scaled variables are

(43)

or the levels of the scaled variables are 1 and -1.
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3.3.2 Bias

Assume that the polynomial approximating function is inadequate. The coefficients of that

polynomial can be determined from Equation (12). Let {t31} be the coefficients thus

obtained and let [Z1] be the corresponding [Z] matrix. Then from Equation (12)

1_1} =([Z1]t[ZI])-I[z1 It{ Y} (44)

Assume that the function being approximated can be expressed as

I IO =[Z] {b} (45)

where

czj=[[z,l [z2JJ (46)

Entering Equations (40), (45), and (46) into Equation (44) gives

{/;1}=1 [/1[zl],([[zl]
(47)

Entering Equation (39) into Equation (47) gives

{bl};-_(_/llb,} +[ZI]'[z21{b_}) (48)

or
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lbl}=lbll+--_[zl]'[Z2]lb2}=lb,l÷[A]{b2l
(49)

where [A] is called the alias matrix. One can see in Equation (49) that the coefficients {[31}

will only be correct estimates of {ba} if the columns of [Z1] are orthogonal to the columns

of [Z2]. Special situations where this orthogonality occurs are next discussed.

3.3.2.1 A bias example--linear approximating polynomial but the exact function contains

linear terms and cross-product terms:

Consider a linear approximating polynomial

k

iffil

(50)

where the exact function is

k k k

y=bo+E b_,÷E E b_j
i=1 i=1 j=i

(51)

where b_jare the undetermined coefficients associated with the cross-product terms. For this

problem, a full 2k factorial design gives that the columns of [Z1] are orthogonal to the

columns of [Z2] and thus
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Ib_}={b_} (52)

3.3.2.2 A bias example--linear approximating function but the exact function is a complete

quadratic polynomial:

Consider a linear approximating polynomial

k

_=bo+_ b_, (53)
iffil

where the exact function is a complete second order polynomial thus

k k k k

y=bo+E +E b,,_+E E box,_j
ill i=1 ill jfi

(54)

Assume again that a full 2 k factorial design is used.

such that one obtains

For this problem the alias matrix is

k

l_o=bo+ _ bu

i.l

/;i=bp j=l,k

(55)

Thus only 6 o is biased with the other coefficients unbiased or uncorrelated.
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3.3,30rthogonal Designs for Linear Approximations

For a problem with r design variables, a full 2r factorial design is an orthogonal design if the

approximating function is a first order polynomial. There are several advantages in using

such an orthogonal design when the approximating function is assumed to be linear. These

advantages are:

1. The solution for the coefficients of the polynomial approximation require a matrix

inverse (see Equation (12)). However, when the design is an orthogonal design, that inverse

is very easily obtained using Equation (40). Thus there is a small computational advantage

in using an orthogonal design.

2. Examples 3.3.2.1 and 3.3.2.2 indicate that under certain conditions, the coefficients

obtained using an orthogonal design are unbiased. Obtaining unbiased coefficients is

probably more important in developing response surface from experimental results than

when developing response surfaces when results are from a deterministic model. With

experimental studies, it may be important to ascertain the unbiased values of the linear

coefficients. For the deterministic model however, one is looking for an

approximating function which gives a good approximation throughout a region of interest.

Whether the coefficients of the polynomial approximation are biased or unbiased is of little

concern.

3. It can be proven that for linear polynomial approximations, an orthogonal design gives

the minimum variance of the coefficients (see page 109 of [3]). It is important when

modeling experimental results to obtain a model that is not overly sensitive to experimental

error and thus there is an advantage in having a minimum variance of the coefficients.
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However, for responsesurfacesof a deterministic model, varianceof the coefficients is not

relevant.

3.3,40rthogonal Designs for 2nd Order Polynomial Approximations

It is not possible to find an orthogonal design when using a second order polynomial

approximating function of the form of Equation (8) (see page 107 of [2]). However, an

orthogonal design can be found if one uses as the approximating function a second order

orthogonal polynomial (page 130 of [3])

k k k k

)_=bo+E b aq+E bii(x'_-x-l'z)+E E be_xj
i=l i=l i=I j=i

(56)

where

N

_ u=l
N

(57)

and where

N=the number of design points and

xj=xj for each of the design points.

(58)

The use of an orthogonal design still gives the small computational advantage that the

inverse shown in Equation (12) is an inverse of a diagonal matrix. However, when using
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second order approximations, it is not clear under what conditions one obtains unbiased

coefficients. Also it cannot be proven that orthogonal designsany longer give a minimum

variance of the coefficients. Thus most of the reasonsfor using orthogonal designsfound

for linear approximations are not present when using secondorder approximations.

3,3,5 General Discussion of Orthogonal Designs

Orthogonal designs offer a small computational advantage that the matrix inverse required

in solving for the coefficients of the polynomial approximating function is an inverse of a

diagonal matrix. When approximating a deterministic model, properties of orthogonal

designs which minimize the variance of the coefficients and which give unbiased coefficients

are unimportant. For this case, the use of orthogonal designs can only be justified by how

well they perform on test problems. Such test problems are presented later in this report.

3.4 Central Composite Designs--Designs for Fitting Second Order Models

It was shown in Section 2 that at least 3 levels of the design variables are required if one

is to make a second order approximation. A workable alternative to using a 3 k factorial

design is a class of designs called the central composite design. These types of designs are

widely used by workers applying second order response surface techniques [3].

3,4,1 Format of the ¢¢nl;ral composite design

The central composite design is a design composed of the 2k factorial design augmented by

additional points. The augmented design points are as follows:
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xl x2 x3 ...xk

0 0 0 ... 0

-a 0 0 ... 0

0 0 ... 0

0 -a 0 ... 0

0 a 0 ... 0

°oo o.. _o. o.° of*

0 0 0 ... -cx

0 0 0 ... a

(59)

Figure 7 shows a central composite design for k=3. The value of a and the number of

design points at the center of the design are varied to meet certain conditions. In the

following, those conditions are chosen assuming that the approximating polynomial function

is given by Equation (56).

3.4.1.1 Single center point rotatable second order experimental designs:

A design is said to be rotatable when the variance of the estimated response--that is, the

variance of _, which in general is a function of position in the design space, is instead only

a function of the distance from the center of the design and not on the direction. In other

words, a rotatable design is one for which the quality of the estimator _ is the same for two

points that are the same distance from the center of the design [3]. It is possible to develop

central composite designs which have a single center point. The value of a which will yield

these rotatable second order designs are given in Table 3.2.
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Table 3.2. Value of r, for single center point rotatable central composite designs

k a¢

2 1.414

3 1.682

4 2.000

5 2.378

5 (1/2 rep) 2.000

6 2.828

6 (1/2 rep) 2.378

7 3.364

7 (1/2 rep) 2.828

8 4.000

8 (1/2 rep) 3.364

Note in Table 3.2 that a rotatable second order experimental design can be obtained with

a fractional factorial design augmented with additional design points as well as with a

augmented full factorial design.

3.4.1.2 Multiple center point rotatable uniform precision designs:

In general, the variance of _ varies with distance from the center of the design. However,

by varying the number of center points, N, the variance at a distance of unity from the

center can be made approximately equal to the variance at the center of the design. Such

designs are referred to as uniform precision designs. The uniform precision design is based

on the philosophy that in the central region of the design space there should be uniform

importance as far as the variance of response is concerned, as opposed to, for example, a
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situation in which the variance is low in the center of the design but increases drastically as

one moves away from the design center [3]. The number of center points, m, and the value

of a can be varied so as to obtain a rotatable uniform precision designs. Table 3.3 gives

those values.

Table 3.3. Values of m and a for multiple center point rotatable uniform precision designs

k m ot

2 5 1.414

3 6 1.682

4 7 2.000

5 10 2.378

5 (1/2 rep) 6 2.000

6 15 2.828

6 (1/2 rep) 9 2.378

7 (1/2 rep) 14 2.828

8 (1/2 rep) 20 3.364

3.4.1.3 Single center point orthogonal central composite designs:

An orthogonal central composite design can be developed where [Z]t[Z] is diagonal. To

obtain a design of this type a single center point can be used and the a value are taken from

Table 3.4.
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Table 3.4. Values of a for single center point orthogonal central composite designs

k t_

2 1.000

3 1.216

4 1.414

5 1.596

6 1.761

7 1.910

8 2.045

3.4.1.4 Rotatable orthogonal designs:

By varying the number of designs at the design center, m, and by selecting appropriate

values for a, an orthogonal rotatable central composite design can be obtained. Values of

m and ot for such a design are given in Table 3.5.
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Table 3.5. The value of m and a for multiple center point orthogonal rotatable central

composite designs

k m

2 8 1.414

3 9 1.682

4 12 2.000

5 17 2.378

5 (1/2 rep) 10 2.000

6 24 2.828

6 (1/2 rep) 15 2.378

7 (1/2 rep) 22 2.828

8 (1/2 rep) 33 3.364

3.4.2 Discussion of the central composite design

Orthogonal central composite designs have been shown to give a variance of response

comparable to that obtained with a full 3k factorial design. Thus, their use is justified when

one has experimental error in the response function. Rotatable and uniform precision

designs attempt to control the response variance. Thus there use is also justified when one

has experimental error in the response function. However, when building a response surface

for a deterministic model where there is no experimental error in the response function,

their use is justified only by how well they perform of trial problems. Likewise, the designs

were developed for the approximating function of Equation (56). If a different second order

polynomial approximating function such as in Equation (8) were used or if a neural net was

used to develop the response surface, then again the justification for the use of the various
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central composite designs would have to be based on their performance on trial problems.

Performance of various central composite designs on trial problems is next reported.

_.4,3 Example -- Fox's Banana Function

Fox investigated in Reference [16] a function

4 2 2 2
y= 10x t -20x_t + 10x_ +x t --2X 1 +5

(6O)

which has banana shaped contours as seen in Figure 8.

considered is (- 1.5 < x I < 1.5, -.5 < x 2 < 2.0).

The region of interest to be

A second order polynomial approximation is to be made of this function using an orthogonal

polynomial approximation as in Equation (56). A two variable orthogonal polynomial

approximation is of the form

,, 2 -- 2 --
y= bo+ b++xI +b2.x2+ b11(xl -x_ ÷b22(x2 -_2) +b ,zx+.x2 (61)

where

N

E x/2, (62)
a=l

N

and where
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N=the number of design points and

xj=xj at the design points

(63)

In the first phase of this example, Fox's function was approximated using the second order

orthogonal polynomial of Equation (61). The designs used in making the approximation

were

1. a full 52 factorial design,

2. a full 32 factorial design,

3. single center point rotatable central composite design,

4. multiple center point rotatable uniform precision central composite design,

5. single center point orthogonal central composite design,

6. multiple center point rotatable orthogonal central composite design,

7. minimum point design from program DESIGNS,

8-10. minimum point design from program DESIGNS augmented by additional randomly

selected design points, and

11. nine randomly selected design points.

Once an approximation was obtained, the approximate function was evaluated at a 31 x 31

grid of points over the region of interest. The approximate function values at these 961

points were used to develop the error parameter v 6 from Equation (6). Because there are

a differing number of functional evaluations required for each of the sundry designs tested,

a comparison of the designs based on vc is misleading. For example, the full 52 factorial
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design has 25 design points each requiring a functional evaluation where as the multiple

center point rotatable orthogonal central composite design has but 16 design points

requiring 9 functional evaluations (in the following it is assumed that the function being

approximated has no experimental or numerical error and thus the 8 design points at the

design center require but one functional evaluation). Thus a comparison of performance

based only on quality of fit is not a fair comparison. The 52 factorial might do a better job

of approximating a function but the computational cost of the 25-9 = 16 extra functional

evaluations might make it a less desirable design.

For each design, design j, a measure of efficiency, Ej, was developed where

where T is the number of functional evaluations required for a given design.

(64)

The efficiency of all the designs was compared to design 1, the 52 factorial design. Table

3.6 gives, for each design tested, the number of design points, N; for central composite

designs, the number of design points at the center of the design, m; the number of

functional evaluations required, T; the value of v; the value of vo; and the value of Ej.
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Table 3.6. Performance of various designs on Fox's Banana Function, orthogonal

polynomial approximating function, -1.5 <x 1< 1.5, -.5 <x 2< 2.0

Design

52 factorial design

3 2 factorial design

single center point rotatable

central composite design

multiple center point rotatable
uniform precision central

composite design

single center point orthogonal

central composite design

multiple center point rotatable

orthogonal central composite

design

minimum point design from

program DESIGNS

minimum point design from

program DESIGNS augmented

by 2 randomly selected design

points

minimum point design from

program DESIGNS augmented

by 3 randomly selected design

points

minimum point design from

program DESIGNS augmented

by 4 randomly selected design

points

random--9 points

INImlTI v
125I 125I 70.76
19 I 19 164.07

9 1 9 54.36

13 5 9 53.08

9 1 9 64.07

16 8 9 51.62

6 ... 6 0

vo Ej

78.92 1.00

102.46 .47

77.34

77.34

102.46

77.34

.35

.35

.47

.35

162.62 .49

8 ... 8 43.27 105.16

9 ... 9 53.53

10 ... 10 53.05

9 ... 9 21.05

.43

88.63 .40

86.44 .44

460.96 2.10
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Several items canbe noted in Table 3.6:

1. The design composed of 9 randomly selected design points did poorly. Even though the

design points were chosen randomly, it turned out that the design points were not well

scattered in the design space but were heavily concentrated in one quadrant of the design

space. The polynomial approximation fitted the function well at the design points but poorly

over the region of interest.

2. The value of v_ was approximately the same for the single center point rotatable central

composite design, the multiple center point rotatable uniform precision central composite

design, and the multiple center point rotatable orthogonal central composite design. These

three designs differ only in the number of design points at the center of the design space.

These designs have 1, 5, and 8 designs at the center, respectively. The effect of putting

more designs at the center is to translate the response surface toward the center response.

For this problem, however, the actual and approximated response were very close at the

design center point, even for only 1 design point at the center. Thus, adding more design

points at the design center did little to translate the response surface and thus did not

material effect the value of v 6.

3. The eleven designs of Table 3.5 were next used to build an approximation using the

standard second order polynomial approximation of Equation (8) instead of the orthogonal

polynomial approximation of Equation (61). Results identical to those of Table 3.5 were

found. The type of approximating polynomial may effect variances but does not affect

quality of fit at the design points or over the region of interest. For those problems were

there is no experimental or numerical error associated with functional evaluations, one is
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not interestedin variance. Thus,there is little advantagein usingthe orthogonal polynomial

approximating functions over a standard secondorder polynomial function.

4. Based on efficiency, the single center point rotatable central composite design, the

rotatable uniform precision central composite design,and the rotatable orthogonal central

composite designperformed the best but none of the designsgave a good approximation

over the region of interest. Over a small region of interest, one could expect that a second

order polynomial approximationcouldwell approximatethegiven function. Obviously,here

the region of interest is too large for a secondorder approximation to be a good one. Thus

a smaller region of interestwaschosen,-.5<xl,.5, -.5<x2< .5. Table 3.7 comparesthe eleven

designsusing this region of interest. Notice that over this smaller region of interest, all the

designsgave a much better approximation to the function.

5. For the smaller region of interest, basedon efficiency, the 32factorial design, the single

center point orthogonal central composite design, and the augmented minimum point

designsperformed the best. Obviously,the optimum choiceof designisproblem dependent.

However, all designsexcept the randomly selecteddesignperformed much better than the

52factorial design.
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Table 3.7. Performance of various designs on Fox's Banana
polynomial approximating function, -.5 < x1<.5, -.5 < x2< .5

Function, orthogonal

Oesign IN l mI_ I v VoI _

19 I 19 I'_ _09_
52 factorial design

3 2 factorial design

single center point rotatable
central composite design

multiple center point rotatable

uniform precision central

composite design

single center point orthogonal

central composite design

multiple center point rotatable
orthogonal central composite

design

minimum point design from

program DESIGNS

minimum point design from

program DESIGNS augmented

by 2 randomly selected design

points

minimum point design from

program DESIGNS augmented

by 3 randomly selected design

points

minimum point design from

program DESIGNS augmented

by 4 randomly selected design
points

random--9 points

9 1 9 6.58

13 5 9 5.88

9 1 9 13.27

16 8 9 5.47

6 ... 6 0

8 ... 8 5.74

14.74

14.74

10.95

14.74

18.66

11.82

9 ... 9 6.45 10.53

10 ... 10 6.33

9 [ ... 9 2.42

10.29

47.22

.62

.46

.62

.52

.44

.44

.48

1.98
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3.4,4 Conclusion

Second order polynomial approximations or neural net equivalents are often adequate for

building response surfaces, especially if the region of interest is small. Central composite

designs are convenient for building the second order approximations. They provide the

necessary information for determining all of the coefficients of the approximating polynomial

and give a good distribution of points in the design space. The approximating function can

be made to closely fit the exact function at the design center by using multiple center points.

When modeling deterministic systems, each functional evaluation at the design center yields

the same function value. Thus, for deterministic models, only one functional evaluation

need be performed at the center point even when multiple center points are used. Table

3.8 gives information relevant to central composite designs for various number of design

variables, k. Central composite designs give over-determined second order polynomial

approximations. In other words, there are more design points in the design than there are

undetermined coefficients in a second order polynomial approximation. Table 3.8 also gives

the percentage that the approximation is over-determined. Previous studies [19] have

indicated that designs which give approximations that are around 20-50% over-determined

tend to be efficient designs. One can see that the central composite designs are reasonable

for k<6. For larger k values, too many design points are being used by the central

composite designs. For k > 5, an augmented minimum point design is a better choice.
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Table 3.8. Information relevant to central composite designsfor various number of design
variables

Number of design

variables, k

Number of Number of

coefficients in a

2nd order

polynomial

approximation

functional

evaluations

required with a

central composite

design

% over-determined

1 3 4 33

2 6 8 33

3 10 14 40

4 15 24 60

5 21 42 50

6 28 76 171

7 36 142 294

8 45 272 504
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4. Optimality Criteria

4.1 D, A, E, G, and V Optimality Criteria

It was pointed out in Section 3 that even for a small number of factors, a complete factorial

experiment become impractical if functional evaluations are computationally or

experimentally expensive to obtain and thus one is forced to use some sub-set of the

factorial design or an alternate design requiring fewer experiments. Section 3 shows that

the variances of the coefficients of a polynomial approximation and the variance of the

predicted response involve the matrix [H] given in Equation (33) and repeated here:

[HJ=([Zl'(Z])-_ (65)

Schoofs [22] lists five criteria for selecting a sub-set of the factorial designs. These criteria

involve the matrix [H]. The criteria, referred to as optimality criteria, attempt to make [H]

minimal. However, "the minimum of a matrix is not a well defined concept and a number

of operational criteria have been developed" [22]. The optimality criteria for selecting a

subset of a full factorial design can be based on selecting the subset satisfying the following

criteria:

1. D-optimality, which is achieved if the determinant of [H] is minimal which in term gives

that the product of the eigenvalues of [H] is minimal.

2. A-optimality, which is achieved if the trace of [H] is minimal which in term gives that

the sum of the eigenvalues of [H] is minimal.

3. E-optimality, which is achieved if the largest eigenvalue of [H] is minimal.
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4. G-optimality, which is achieved if the maximum over all candidate points of the

estimated response variance is minimal.

5. V-optimality, which is achieved if the estimated response variance, averaged over all

candidate points is minimal.

4,1,1 tTri/eria Applied tO a One Dimensional Example

An example is considered here to compare the performance of the 5 optimality criteria.

The following test function of one variable was considered:

y=2+x+sin[-_(x+ 1)],
- 1 _;x,: 1 (66)

This function was approximated with polynomials of order 1-4. The approximations shown

in Figure 9 were developed using 13 designs, uniformly spaced in the region of interest.

These approximations were then used to generate the functional values at 61 uniformly

spaced points in the region of interest which were used to plot the curves of Figure 9.

Further approximations of Equation (66) were developed using various number of design

points, n. The designs selected were

1. uniformly spaced design points, n=5,7,9,11,13;

2. randomly selected design points, n = 5,7,8,11,13;

3. an n member subset of the 13 uniformly spaced design points, n=5,7,9,11.
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Under item 3, the subset of design points was chosen using:

1. D-optimality,

2. A-optimality,

3. E-optimality,

4. G-optimality, and

5. V-optimality.

A FORTRAN program was written to perform the investigation under item 3. The

demanding part of the programming was to identify all the possible subsets from the set of

thirteen design points. After developing a procedure to identify all combinations, each

subset was used to build the [HI matrix. The "optimal" [H] matrix was then determined

using the five optimality criteria. The coefficient vG was then computed for the optimal

subset. Figures 10-13 show the value of vG for the D, A, E, and G optimality criteria when

a first, second, third, and fourth order approximation is being made, respectively, versus the

number of design points specified in the subset. Also shown in those figures is the value

of vG for designs consisting of design points uniformly spaced in the region of interest.

It was found that for all subsets of size r from a design point set of size n that the estimated

response variance, averaged over all candidate points, was invariant. This finding

undoubtedly could also be proven theoretically but such a proof was not attempted. From

this example, one can conclude that the V optimality_ criteria, which employees the estimated

average response variance, is not a viable cri!Icri_t for selecting a subset of design points from
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a given set. From Figures 10-13, one can see that in most cases there is little difference in

the performance of the various optimality criteria with criteria D and G performing slightly

better than the other two criteria. As can be seen in Figure 12, on one occasion (when

using a third order polynomial approximation and when selecting a subset of 5 design points

from the 13 design point set) the G optimality criteria performed poorly while the D criteria

did not. Thus, this example indicates that the D optimality criteria may be the criteria of

choice. There is a further advantage in using the D optimality criteria. The requirement

that the determinant of [H] is minimal is equivalent to a requirement that the determinant

of [G] is maximal where

[6q=tZq'tZl (67)

Thus the D optimality criteria insures that the procedure for determining polynomial

coefficients in Equation (12) will be well defined. In other words, Equation (12) uses the

inverse of [G]. The D optimality criteria guarantees that [G] is not singular.

One can see in Figures 10-13 that, in most cases, all the optimality criteria performed worst

than the uniformly spaced design case. This example indicates that a desima picked using

an 0ptimality Criteria may be no better than a design of the same size in which the desi_a

points arc oniformly located in the design space.

4.2 S and O Optimality Criteria

The previous optimality criteria involved only the matrix [H] and did not consider the
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function to be approximated. Thus for a given number of design variables and level of

approximation, the same designs would be selected no matter what the nature of the

function to be approximated. Initially it was thought that a superior optimality criteria

would have to consider the nature of the function. Thus two additional optimality criteria

were examined:

1. S-optimality, which is achieved if the average error of approximation at the design points

is minimal and

2. Q-optimality, which is achieved if the maximum error of approximation at the design

points is minimal.

Here

r

E(yi-331)2

average error of approximation= i
r

(68)

- and

maximum error of approximation=max (yi-)_f, i= 1,..,r (69)

where r is the size of the subset of design points to be selected. One can see that with the

S and Q optimality criteria, the function to be approximated effects the design points

selected.
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4.2.2 Criteria Applied to a One Dimensional Example

The one dimensional example problem of Section 4.1.1 was then re-examined. Figures 14-

17 show values of v6 using the S and Q optimality criteria and using a first, second, third,

and fourth order polynomial approximation, respectively, versus size of the subset of design

points. Also shown in these figures are results for uniformly spaced design points. One can

see in these figures that terrible approximations were obtained with these criteria when only

small subsets of design points were selected from the original set. Figures 18-20 indicate

why such bad approximations are obtained with these two criteria.

Figure 18 depicts results obtained by having eleven designs points selected, using the Q

optimality criteria, from a set of 13 design points. The Q optimality criteria finds an

approximation such that the maximum error of the approximation over eleven design points

is minimal. One can see in Figure 18 that the approximating function did indeed well fit

the exact function at the 11 design points selected. However, the approximating function

did a poor job of approximation at the ends of the region of interest and thus would not

yield a low value of vc. Figure 19 is similar to Figure 18 except that this figure depicts

results obtained by having 7 design points selected from the set of 13 design points. One

can see that for the optimum design selected, there is an almost perfect approximation at

the design points selected but over a much larger region the approximation is poor and thus

a large value of vG would be obtained. In Figure 20, only 5 design points are selected.

Again at those design points, an almost perfect approximation is obtained but a terrible

approximation is obtained over a large part of the region of interest and thus a large vG
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would be obtained.

operative.

Thus we can conclude that the $ and O optimality_ criteria are not

4.3 An Alternate Approach--Random Selection of Designs

The effect of randomly picking design points was next considered. Here designs are picked

in the region of interest using a random number generator.

4.3,1 Random Selection of Designs Applied to a On¢ DimfnsiQnal Example

For the one dimensional problem under consideration, first, second, third, and fourth order

approximations were considered. Design point sets containing 5,7,9,11, and 13 design points

were developed by randomly picking design points in the region of interest using a random

number generator. Approximations were developed using the design sets. Results using

these approximations are compared in Figures 21-24 to results using uniformly spaced design

points. One can see in these figures that most of the time results from randomly picked

design points are either as good as or not much worst than results from uniformly spaced

design points. However, on two occasions, when the number of design points in the design

set was small, a relatively poor approximation was obtained. Obviously where one is picking

only a small number of points using a random number generator, there is a chance that a

bad set of points can be generated and indeed on these two occasion a poor selection of

points was made. In general however, when more design points are randomly selected,

those points should be scattered throughout the design space and good approximations

should be obtained. In conclusion, randomly selecting design points may be a viable method

of design selection.
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4.4 Larger Problems

Consider a problem in two variables and consider that the potential design points will be

taken from a 6 x 6 grid of points. Let

r = total number of design points in the set of potential design points,

c = number of design points in the selected subset of design points,

nc = the number of different combinations of designs in the subset.

For the problem at hand, r=36. Subset sizes of c= 15, 20, 25, and 30 are to be considered.

The number of possible combinations of design points in the subset, nc, is given by

nc-- r! (70)
(r-c)! c1

Table 4.1 summarizes the number of combinations for this study.

Table 4.1 Number of combinations of designs in a two variable study

r c nc

Total number of design Number of point in subset Number of combinations

points

36 15 5,567,902,560

36 20 7,307,872,110

36 25 600,805,296

36 30 1,947,792
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One can see that for even small problems, it is infeasible to examine all possible

combinations of subsetsof sizeN from a given set of designpoints. Welch [23], instead of

evaluating all possible N-point designs,developed a "branch and bound" algorithm which

guaranteesglobal D-optimal designsbut which doesnot generateand evaluateall possible

designs.However, evenhere the computingcostsarehigh. Fedorov [24] developedanother

technique which neglects the integer character of the componentsof the design set and

obtains a discrete designwhich is rounded off to an exact design. Reference [22] reports

that thesedesignsare consideredonly approximate. The most popular algorithm seemsto

beDETMAX by Mitchell [25]. Quoting reference [22], "I'he algorithm starts with an initial

m-point ED (experimental design); the final goal is an optimal N-point ED. During each

iteration step that candidate point, which results in the largest increase of det(M), is added

to the design, and subsequently that point, which results in the smallest decrease of det(M),

is removed from the design. The number m of points in the initial design may be larger or

smaller than N. If necessary the algorithm first adds (if m < N) or rejects (if m > N) points

until the number of points in the ED is equal to N. In order to avoid local optima the

algorithm is able to perform 'excursions', in which several points are added at one go and

subsequently the number of points is reduced to N. If the resulting N-point ED has not

been improved, another excursion will be made from the same initial design. If the

excursion is successful the resulting ED will be used as starting ED in a further attempt to

maximize det(M). The algorithm terminates when, after several excursions, no better ED
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is found. The algorithm generates high quality EDs against relatively low computing costs."

An attempt is being made to obtain the algorithm DETMAX.

4d; Optimality' Criteria Based on Minimizing Uncertainty_

Reference [21] considers problems where there is no experimental error. That reference

uses an optimality criteria based on selecting a design which minimizes the uncertainty in

the approximating function. That reference was given mixed reviews by a number of leading

authorities in the field [21] (reviews follow the paper). The formulation is quite theoretical

and difficult to follow. The formulation seems to have promise but requires additional

theoretical development before it becomes operative.

4.6 Conclusion

There is little rational for using any of the investigated optimality criteria when building

approximations of functions which contain no experimental error. However, the D-

optimality criteria can conveniently be used as a heuristic in selecting design points.

Previous investigations have indicated that approximations should be over-determined. That

is to say that more training pairs should be used to build an approximations than the

number of associated undetermined parameters. It has been suggested that a 20-50% over-

determined system might be reasonable. The program DESIGNS, described in Section 2,

develops enough designs to exactly determine a quadratic approximation of a given function.

The D-optimality criteria can be used as a heuristic for selecting design points to
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supplement those generated by DESIGNS. The use of the D-optimality criteria to select

the supplementary points would guarantee than no singular matrices would be encountered

in determining the undetermined parameters associated with the polynomial approximation.
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5. Significance Testing of Coefficients

5.1 Introduction

When the training pairs used to build a polynomial response surface contain experimental

or numerical error, certain coefficients in the polynomial approximation may not be

significant. In other words, even though one calculates a value for some coefficient, b i, the

experimental or numerical error may have such an effect on that coefficient that it could just

as well be taken as zero as the value calculated. In situations like this, it may be

advantageous to drop that term from the polynomial approximation and redevelop the

response surface. Such a procedure is discussed in pages 34-38 of [3] and an automated

procedure for performing such an operation was developed in [26]. Testing of significance

involves the t-test which is next described.

_.2 t-test

Coefficients of the polynomial approximation are found from

determination of those coefficients involve the matrix [H] where

Equation (12). The

(71)

A number of terms must now be defined:

mean square error=MSE=

bl

i-I

N-m

(72)
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where

standard error coefficient=se_=_MSE H u
(73)

(74)

N = the number of design points and

m = the number of coefficients in the polynomial approximation.

In making the test of significance, t i from Equation (74) is compared to tabulated values of

ta. The value of ta is taken from a table of "Percentage Points of the Student's t

Distribution" [3]. The value taken depends on the level of significance desired. In lieu of

using tabulated values, ta is often taken as four [26]. If ti is less than t_ (t_ < t_), then that

coefficient's importance in approximating the response is deemed to be insignificant and

therefore may be eliminated from the response function.

The primary focus of this study was to examine methods of developing good response

surfaces for deterministic models, i.e. for systems that contain no experimental or numerical

error. Statistical testing of coefficients presupposes experimental or numerical error and

thus is not relevant when approximating response which contains no error. However, the

method was thought to perhaps offer a heuristic for improving the quality of a response

surface even if experimental or numerical errors are not present. Thus, two examples were
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examined. Results are next reported.

5.3 Example 1 -. F0x's Banana Function

Example 1 again examines Fox's Banana Function [16]. A complete second order

polynomial approximation (m=6) and a complete third order polynomial approximation

(m= 10) were developed. These approximations were developed using a complete 62

factorial design (N = 36). A t-value, ti, was calculated for each parameter, bi, and compared

to ta = 4. Parameter that lack significance (t i < ta) were eliminated. A new approximation

was then developed using only the significant parameters. The values of v and vC from

Equations (5) and (6), respectively, were developed for the complete polynomial and for

the polynomial containing only terms deemed significant. Results are shown in Figures 25

and 26. On can see in these figures that eliminating coefficients deemed insignificant had

an adverse effect on the quality of the approximation over the region of interest.

5.4 Example 2

The effect of eliminating coefficients deemed insignificant was tested on the function

Y---(4+xl)3+sin[ (xl + 1)] +2 +x_ +sin(_.) +Tx.zx1 (75)

Again, a complete second order polynomial approximation (m=6) and a complete third

order polynomial approximation (m= 10) were developed. These approximations were

developed using a complete 62 factorial design (N--36). A t-value, t i, was calculated for
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eachparameter,b_, and comparedto ta = 4. Parameter that lack significance(q < ta)were

eliminated. A new approximationwasthen developedusingonly the significant parameters.

The values of v and vo from Equations (5) and (6), respectively, were developed for the

complete polynomial and for the polynomial containing only terms deemed significant.

Results are shown in Figures 27 and 28. On can see in these figures that eliminating

coefficients deemed insignificant offered no improvement in the quality of the response

surface.

5.5 Conclusion

The applicability of significance testing of polynomial coefficients when modeling

deterministic systems was considered. Two examples were examined to see if eliminating

terms of polynomial approximations which were deemed to be insignificant by the t-test

would improve the quality of the response surfaces developed. Based on these two

examples, it was concluded that no improvement in the predictive capability of response

surfaces over regions of interest would be obtained with such a procedure. The relevance

of significance testing is when modeling systems containing numerical or experimental error.
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6. Applicability of the Response Surface Technique

6.1 Introduction

The following study was performed to ascertain under what circumstances could the

response surface technique be used to advantage in engineering optimization application.

In this regard, assume fhat a quadratic polynomial approximations is to be made of functions

of n variables. The number of undetermined coefficients in that approximation is:

number of coefficients=
(n+ 1)(n+2)

2
(76)

Previous studies [19] have shown that the best approximations are obtained when the

approximations are over-determined. Thus, the number of functional evaluations required

to make the approximation is:

number of functional evaluations=
b(n+ 1)(n+2

2
(77)

where _ determines the degree that the approximation is over-determined.

The functional evaluations required to build the approximation are initially performed

before the start of the optimization process. By using parallel processing, these functional

evaluations may be less computationally expensive than evaluations made sequentially in a

direct optimization procedure. The number of required evaluations of Equation (77) is then
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equivalent to a reduced number of sequential evaluations thus:

equalivent number functional evaluations= b fJ(n+ 1)(n+2)
2

(78)

where B is a coefficient of efficiency associated with parallel processing.

An optimum solution can be attempted using the response surfaces developed instead of the

original functions. However, because of the inexact nature of the approximations, a new set

of response surfaces may have to be developed at the most recent approximate solution and

another optimal solution attempted. This procedure may have to be repeated a times to

reach the optimum solution for the original problem. The total number of equivalent

functional evaluations performed in reaching this optimum is:

total equivalent functional evaluations=
[_b(n+ 1)(n+2)

2
(79)

If the solutions was attempted by direct optimization techniques instead of using response

surfaces, Barthelemy [27] states that a solution can be obtained in most cases using no more

than _ first derivative evaluations. If the first derivatives are obtained by finite difference

formulae, an estimate of the number of functional evaluations required by a direct solution

procedure is:

functional evaluations direct raethods,,O/(n+ 1) (80)
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If the responsesurface technique is to be competitive with the direct solution technique,

then from Equations (4) and (5) one must have:

cx15b (n+ 1)(n+2) <.t0(n + 1) (81)
2

where _, is a convenience factor associated with using response surfaces. In other words, an

investigator may tolerate more functional evaluations with the response surface technique

than with the direct solution procedure just for the convenience of using response surfaces.

Rearranging Equation (81) gives

In+11[o_135(n+2)__1 <0 (82)
2y

Since (n+ 1) is positive, one obtains

o_13b(n+2)__ <0 (83)
2"I'

or

n< 2_¥ -2 (84)
_138
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In review

=number sequential optimizations
= parallel processing coefficient

6 = overdeterrained coefficient

¥ = convenience coefficient
= direct solution coefficient

(85)

Reasonable ranges of the parameters involved are

a-- 1.00-.4.00

i =O.lO-.1.oo
8 =1.25-.1.75

y = 1.00-.3.00
lp=6.00-.10.0

(86)

For an approximate upper bound on the number of design variable that

economical used with the response surface technique take:

could be

a=l.00

I_=O.lO
8=1.25

y =3.00
lp=10.0

(87)

- giving

nx498 (88)

Under the most unfavorable set of circumstances, that is:
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tz:4.00

p=l.OO
5 =1.75

y=l.O0

q,=6.00

(89)

one obtains

n-O
(90)

Thus depending upon the problem, one could use the response surface technique for n =0

to n= 500 variables. Consider the following reasonable set of parameters

a =3.00

p=0.50
8=1.25

'y:l.50

q,=8.00

(91)

giving

n<13
(92)

Thus, it is reasonable to assume that the response surface technique could be used for up

to 10-15 design variables.
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6.2 Conclusion

Under the most advantageous circumstances, the response surface technique applied to

engineering optimization application could be used for up to 500 design variables. Under

the worst set of circumstances, it is entirely inappropriate. Under normally expected

circumstances, this technique might be used to advantage for 10-15 design variables.
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7. Additional Examples

7.1 Introduction

The next several examples examine the effect of design selection on the quality of

approximations. In each case, a second order polynomial approximation is made of a trial

function. Different number of design variables are considered in each example. Thus, for

each example different designs are appropriate. In the first example, there are 4 design

variables. When there are fewer than 6 design variables, central composite designs are a

possible appropriate choice. Other choices are the 3 k factorial design, the minimum point

design, the augmented minimum point design, or randomly selected design. All of these

designs are considered in that example. In the second and third examples, there are 15 and

20 design variables, respectively. Here, the 3 k factorial design and central composite designs

contain too many design points to be practical. For these examples, the minimum point

design, the augmented minimum point design, and the randomly selected design are

appropriate and are considered.

7,2 The 35 Bar Truss with 4 Design Variables

In many response surface applications, the function to be approximated is a relatively

smooth function of the design variables which can be approximated with a lower order

polynomial or an artificial neural net with only a few nodes on the hidden layer. A problem

of this type is shown in Figure 29. In this example, all loads shown in Figure 29 are in kips,

all members of the lower chord of the truss are assumed to have area, A 1, and all members
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of the upper chord to have area, Az, all vertical and diagonal members to have area, A 3.

The depth of the truss is H. A response surface is to be constructed for the stress in

member BC in terms of the design variables, xi thus

xi= I/A i, i= 1,3

x 4=.09375H-.4375

(93)

The region of interest is

2 in 2 :_Ai< 8 in 2

6 ft <H< 103t

(94)

or in terms of the design variables

.125.<,xj <.5 (95)

A number of designs were used to develop a second order polynomial approximation for the

stress in member BC. Each approximation was then used to predict stress on a 5 x 5 x 5

x 5 grid of points. The predicted stress and the actual stress on these NG = 625 grid of

points were then used to develop v G from Equation (6). The parameter v_ is a measure of

the quality of the approximation over the region of interest.

The different designs examined required different numbers of functional evaluation. So as

to get a measure of the quality of fit of the approximation over the region of interest which
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Table 7,1 The 35 bar truss with 5 design variables, 2nd order polynomial approximation

Description

3 4 factorial design

single center point rotatable

central composite design

multiple center point rotatable
uniform precision central

composite design

single center point orthogonal

central composite design

multiple center point rotatable

orthogonal central composite

design

minimum point design from
program DESIGNS

minimum point design from

program DESIGNS augmented

by 3 randomly selected design

points

minimum point design from

program DESIGNS augmented

by 6 randomly selected design

points

minimum point design from

program DESIGNS augmented

by 9 selected design points

randomly selected design

m a T F v (%)

...... 81 81 3.34

1 2.000 25 25 0.66

7 2.000 31 25 0.59

1 1.414 25 25 1.47

12 2.000 36 25 0.55

15 15 0.00

18 18 0.40

21 21 0.38

24 24 0.41

25 25 0.00

vG(%)

2.41

2.67

2.67

2.37

2.67

3.99

3.86

3.91

3.77

824.2

0.34

0.34

0.30

0.34

0.31

0.36

0.42

0.46

105

m = number of design points at the center of the design space

T = the total number of design points

F = the number of functional evaluations required

ot = parameter which defines location of certain design points
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takes into account the number of functional evaluationsperformed, the efficiency, Ej, from

Equation (64) wasdevelopedfor eachdesign. Table 7.1reports for eachdesignconsidered,

the efficiency, Ej, aswell as other relevant information.

One can see in Table 7.1 that all the designsconsidered, except the randomly selected

design, gave a good approximation over the region of interest. Randomly selected designs,

which often work well, can sometimes suffer from the problem that the coefficient matrix

used to solve for the approximation's associated parameters is poorly conditioned or that

the design points selected are not well scattered throughout the design space. In either case,

they can yield a poor approximation over the region of interest as in this example.

The 3 4 factorial design well approximated the trial function. However, because it uses so

many design points its efficiency measure is poor and thus is not a design of choice. The

single center point orthogonal central composite design and the minimum point design from

program DESIGNS performed the best, based of their efficiency. However, excluding the

randomly selected design and the 3 4 factorial design, all of the designs considered gave a low

value of v6 and had approximately the same value of efficiency.

Under normal circumstances, information is not available to calculate v G and one must use

the parameter v as a measure of the quality of fit over the region of interest. However, the

parameter v is only a measure of quality of fit over the region of interest if the

approximation is over-determined. Thus, under normal circumstances one would not want
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to use the minimum point design. This example indicates, that for problems of the size of

this example, that any of the central composite designs or the augmented minimum point

designs would be appropriate.

7.2 The 35 bar truss with 15 design variables

This example again considers the 35 bar truss of Figure 29. In this example, H is 10 ft., the

areas of the 14 bars of the top and bottom chords are _, i= 1,14, and the area of the

vertical and diagonal members is A15. The design variables of the problem are taken as

x:I/A_, i=1,15 (96)

The region of interest is

or in terms of the design variables

2 in 2 < A i < 8 in 2 (97)

.125 _.x::.5 (98)

Response surfaces were developed for the stress in member BC using a 2nd order

polynomial approximation. The approximation were developed using various designs. To

test the quality of the approximations over the region of interest, the function and the

approximations were evaluated at NG =500 randomly selected test points over the region

of interest. That information was then used to calculate v G from Equation (6). The random
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number generator used to develop design points uses, in generating its numbers, an initial

seed parameter, IFLAG. A different value of IFLAG was used to generate the 500 test

points than was used to generate random points in the randomly selected designs or in the

augmented minimum point designs. Thus, the test set of points does not duplicate any of

the design points in the designs considered. Results of this investigation are reported in

Table 7.2.

One will notice in Table 7.2 that only minimum point designs, augmented minimum point

designs, and randomly selected designs are considered. A 315 factorial design contains over

14 million design points. Thus, the use of the 315 factorial design is out of the question. For

a problem in k design variables, the central composite design uses a 2k factorial design

augmented by 2k+ 1 additional design points. Thus, such a single center point central

composite design for this problem contains 32,799 design points. Here again, such a design

is impractical. One can develop a central composite design by augmenting only a fraction

of the 2k factorial design. For this problem, a single center point central composite design

using only a 1/4 fraction of the 215 factorial design would contain 8,223 design points which

is still an impractical design. Thus, for problems of the size of this example, only the

minimum point designs, augmented minimum point designs, and randomly selected designs

are of reasonable size.

We can see in Table 7.2 that all of the designs with the exception of the "randomly selected-

-exactly determined design" did a good job of approximating truss behavior. A singular
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matrix was encountered in Equation (10) for the randomly selected--exactly determined

design. With completely randomly selected designs, there is always the possibility of having

a poorly conditioned coefficient matrix [Z] in Equation (10) and indeed this occurred in this

problem. However, there was no problem with matrix conditioning using randomly selected

over-determined designs.

Table 7.2 The 35 bar truss with 15 design variables, 2nd order polynomial approximation

Description

minimum point design from

program DESIGN-

exactly determined

augmented minimum point

design--20% over-
determined

augmented minimum point

design--40% over-
determined

random selection--exactly
determined

random selection--20%
over-determined

random selection--40%

over-determined

F

136

163

190

136

163

190

v%

0

0.083

0.087

0.003

0.003

v6 %

1.263

0.294

0.060

0.029

0.010

E i

1.0

0.28

0.07

0.03

" singular coefficient matrix

0.01

The efficiency parameter, Ej, is calculated in Table 7.2 but it is rather a meaningless

parameter for this problem because all the designs so well fit the exact function. In real life
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situations, one usually does not have available information for calculating v G. Thus, the

parameter v or like term must be used as a measure of the quality of the approximation.

The parameter v is not a meaningful measure of the quality of fit over a region of interest

unless the system is over-determined. Thus for this example, the design of choice would be

either the 20% over-determined minimum point design or the 20% over-determined

randomly selected design.

7.3 Analytical function--20 design variables

This example considers a problem with even more design variables. The function tested is:

20 2020 2020

i=l i=1 j=i 1=1 1=1

(99)

A second order polynomial function was used to build the response surface approximating

this function. The polynomial approximating function had 231 undetermined coefficients.

Because of the large size of this problem, factorial designs and central composite designs

are not appropriate. A minimum point design, augmented minimum point designs, and

randomly selected designs were considered. Values of the test function and approximate

function were evaluated at NG = 1000 randomly selected points and the parameter v_ was

developed using this information. The measure of efficiency of the designs examined along

with other relevant information is given in Table 7.3.
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Table 7.3 Analytical function with 20 design variables, 2nd order polynomial approximation

Description

minimum point design from

program DESIGN-

exactly determined

augmented minimum point

design--20% over-
determined

augmented minimum point

design--40% over-
determined

random selection--exactly
determined

random selection--20%
over-determined

random selection--40%

over-determined

F

231

277

323

231

277

323

v%

0

5.83

9.58

0.61

0.46

Vo %

88.93

49.82

18.03

7.21

1.20

" poorly conditioned coefficient matrix

0.67

0.28

0.10

0.02

Just as in Example 7.2, a exactly determined randomly selected design gave a poorly

conditioned coefficient matrix. These examples indicate that randomly selected exactly

determined designs should be avoided. The 40% over-determined randomly selected design

did an excellent job of modeling the test function and was the most efficient design

considered. It seems that on problems with a large number of design variables that

randomly selected over-determined designs should be expected to work well.
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7.4 (_on¢lusion

The examples of this section have shown that design selection depends on the number of

design variables. If the number of design variables is less than 6, appropriate designs are:

1. augmented minimum point designs

2. central composite designs

3. over-determined randomly selected designs.

When there are more than 6 design variables, the central composite designs contain too

many design point for consideration. For more than 6 design variables, appropriate designs

are then

1. augmented minimum point designs

2. over-determined randomly selected designs.

The example examined indicate that in all cases, over-determined designs should be used.

They the most efficient designs. Also, when a design is over-determined the coefficient v

can be used as a measure of the quality of the approximation over a region of interest.

Being able to use v as a measure of the quality of fit over the region of interest is very

important because, in general, information is not available to determined the parameter vG.
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8. Augmented Minimum Point Designs

8.1 Introduction

Design selection in the literature concentrates of linear or quadratic response surfaces. This

study has also concentrated on quadratic approximations for several reasons:

1. linear approximations, in most instances, will be inadequate to model functions of

interest,

2. for many problems, a 2nd order approximation will be adequate to model response

especially if the region of interest is limited,

3. there is a scarcity of literature which address design selection for cubic or higher order

polynomial approximations, and

4. in optimization process using response surfaces, for moderate size problems, it is more

computationally efficient to perform a sequence of quadratic approximations than one cubic

or higher order approximation. This fact is next discussed.

The number of terms in a second order polynomial in n design variables is

number terms quadratic=(n+ 1)4 n(n+ 1) (100)
2

The number of terms in a 3rd order polynomial in n design variables is
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"4
number terms cubic= 1+ _-n(n+ 1) +

2

nl

6(n-3)!
(101)

Table 8.1 gives, for various number of design variables, the number of terms in a 2nd order

and 3rd order polynomial and their ratio.

Table 8.1 Number of terms in a 2nd and 3rd order polynomial and their ratio

number of design
variables, n

number of terms

in quadratic

number of terms

in cubic

3 10 20

6 28 84

cubic/quadratic

2

3

9 55 220 4

12 91 455 5

15 136 816 6

One can see that for problems with more than 6 design variables, it will probably be more

computationally efficient in an optimization algorithm to utilize a sequence of quadratic

response surfaces than one 3rd or higher order response surface. When there are 6 or fewer

design variables, 3rd or 4th order response surfaces may be used to advantage.

In this report, the term "minimum point design" refers to a design that has just enough

design points to allow the determination of coefficients of an approximating polynomial.

The term "augmented minimum point design" is a minimum point design which contains
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additional designpoints. Thus, augmented minimum point designs are over-determined

designs. The studies that have been performed in this report indicate that augmented

minimum point designs are competitive with, if not better than, central composite designs

for developing a 2nd order response surface. A program DESIGNS [20] was developed for

generating augmented minimum point designs for developing a 2nd order response surface.

That program is described in Section 8.2.

When there are 6 or fewer design variables, it may be computationally beneficial to use a

3rd order or 4th order response surface. Thus, the program DESIGN4 [28] was developed

to generate augmented minimum point designs for a 4th order response surface. The

program DESIGN4 is discussed in Section 8.3. The program can also be used to develop

a 3rd order response surface. The 3rd order minimum point design is a subset of the 4th

order minimum point design. Thus the 4th order minimum point design will give an over-

determined 3rd order approximation. Additional randomly selected design points can be

added to the 4th order minimum point design to give the desired degree that the 3rd order

approximation is to be over-determined.

8.2 Augmented Minimum Point Designs for 2nd Order Approximations

The basic building block for program DESIGNS is the star pattern of design points. Figure

4 shows the star pattern for 3 design variables. This pattern of design points allows one to

determine those coefficients of a 2nd order polynomial approximation associated with the
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terms

1, x,, x_2, i=l,n (102)

To be able to determine the coefficients associated with the terms

x_xs., i,j (103)

one must supplement the star pattern with one additional design point in the _q, xj planes.

Figure 30 shows the additional design point in the x_, xj plane. Figure 6 shows the total

minimum point design for 3 design variables.

Studies of this report indicate that designs should be over-determined. Having a design that

is 20-50% over-determined is a good compromise between keeping down the number of

design points while still getting a good approximation. The program DESIGNS augments

the minimum point design with a user selected number of random design points.

8,2.1 Specifics ofprogram DESIGNS

A listing of the FORTRAN program DESIGNS is found in Appendix 1 and a copy of that

program is found in file "designs.f' on the floppy disk accompanying this report. The

program should be compiled with a F77 compiler with the compiled program called "design".

To run the program just enter "design" from the keyboard. The program prompts the user

for
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S...

1. the number of design variables,

2. the number of designs points to augment the minimum point design, and

3. a seed parameter, IFLAG, which is used to generate the random numbers (IFLAG can

be entered as any positive integer).

The program then generates a design in local coordinates with the maximum range on each

design variable of -1 to + 1. The program then

4. asks the user to enter an integer which specifies whether design point coordinates are

to be also generated in global coordinates. If they are to be calculated in global

coordinates, the program then

5. prompts the user to enter the range of design variables in global coordinates.

Results with commentary are written to file "design.res". Design points without commentary

are written to file "design.run".

8.3 Augmented Minimum Point Design, for 3rd and 4th Order Approximation

A 3 k factorial design is used as the building block of this minimum point design. The 3 k

factorial design provides information for calculating the coefficients associated with the

terms

1, x,, xr_j., x?, x_x 1, xi2x:, j,i
(104)

Additional points are then added at -1 and 1 (in local coordinates) along the xi axis. These
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points together with the 3k factorial design point give the star pattern which can be seen in

Figure 31. With this arrangement of points, there are 5 design points along the x_axis which

provides information for calculating the coefficient associated with the terms

' (105)"gi

Additional design points are then placed in each xi, xj plane which provides information for

calculating the coefficient associated with the terms

x_xi (106)

These points are also shown in Figure 31.

8.3.1 Specifics of program DESIGN4

A listing of the FORTRAN program DESIGN4 is found in Appendix 2 and a copy of that

program is found in file "design4.f' on the floppy disk accompanying this report. The

program should be compiled with a F77 compiler with the compiled program called

"design4". To run the program just enter "design4" from the keyboard. The program
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prompts the user for neededinformation. Prompts andresponseare similar to those for the

program DESIGNS.

11,4 Conclusion

A minimum point design is a design that has just enough design points to allow the

determination of the coefficients of an approximating polynomial. An augmented minimum

point design is a minimum point design which contains additional design points. Augmented

minimum point designs are competitive with, if not better than, central composite designs

for developing a 2nd order response surface. Minimum point designs should be augmented

with enough points that the approximation is 20-50% over-determined. A program

DESIGNS was developed for generating augmented minimum point designs for developing

a 2nd order response surface.

When there are more than 6 design variables, 3rd or higher order approximations require

so many design points that it is computationally better to perform a sequence of 2nd order

approximations in an optimization process than one higher order approximation. When

there are 6 or fewer design variables, a 2nd order approximation may often be satisfactory.

However, for those cases where it is desirable to use a higher order approximation, program

DESIGN4 was developed. That program generates designs which can be used to develop

3rd or 4th order approximations.
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9. Solution Algorithm

9.1 Introduction

In this investigation, the program NEWPSI was used to perform the studies involving

polynomial approximations. That program can investigate under-determined, exactly-

determined, or over-determined approximations of various orders. The version submitted

with this report can handle up to 15 design variables as programmed. The order of

polynomial it can handle is as follows:

1. one design variable, up to a 20th order polynomial

2. two design variables, up to a 5th order polynomial

3. for 2-15 design variables, a second order polynomials.

One can use up to 250 designs to train the approximation. In calculating v c, it can handle

up to 2000 grid points.

The program solves for the undetermined parameters associated with the approximation.

It then evaluates the approximate function at the design points and calculates the error

parameter, v. It then reads in the design points and function value on the test grid. The

approximate function is evaluated at the grid points and the error parameter, Vo, is then

evaluated.

9,2 pro m'am Specifics

A listing of the FORTRAN program NEWPSI is found in Appendix 3 and a copy of that
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program is found in file "newpsi.f' on the floppy disk accompanying this report. The

program shouldbe compiledwith a F77 compiler and thecompiled program called "newpsi".

To run the program just enter "newpsi" from the keyboard. Data is read from the file

"newpsi.dat". Data can be in free format. The program asksfor the following data:

1. a value of the print code, ip; (If ip=4, great quantities of output are generated for

program checkout. Normally the program is run with ip-0 for normal output).

2. the number of designvariable, nd;

3. the order of the polynomial being considered, np;

4. the number of design points in the design, m;

5. the design and function value at the design points, x(i,j), y(i);

6. the number of design points on the grid, ng; and

7. the design and function value at the grid points, xx(i,j), yy(j).

Output is written to the screen and to file "newpsi.res".
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10. Conclusion

For a given order of approximation of a function, f, the quality of the approximation is

affected by

a. the number of levels of the design variables,

b. the location of the design points, and

c. the degree which the approximation is over-determined.

For an nth order approximation,

1. there must be n+ 1 levels of the design variables;

2. the design points must be located so that information is available for calculating all

of the nth derivatives of f;

3. the approximation should be, at least, 20-50% over-determined.

For example, for a 2nd order approximation in 3 design variables, there must be at least 3

levels of the design variables, design points must be located so that information is available

for calculating

o_f _f i-- 1,3; j--l,3 (107)

A complete 2nd order polynomial approximation contains 10 undetermined coefficients.

Thus, at least 10 design points are required to provide information for calculating these
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coefficients. To have the approximation 30% over-determined, one would want to use 13

designpoints.

For second order approximations,when there are fewer than 6 design variables, central

composite designsmeet requirements 1-3. However, for 6 or more designvariables, these

designscontain too many designpoints. A minimum point designis onewhich containsjust

enoughdesignpoints,meeting the derivative requirements of item 1and 2 above,to exactly-

determine the approximation. An augmentedminimum point design is a minimum point

designsupplementedwith additional designpoints. The program DESIGNS wasdeveloped

to yield augmentedminimum point designsfor 2nd order approximations. The quality of

approximationsdevelopedusingdesignsfrom program DESIGNS wascomparable to, if not

better than, other standard designssuchas the central composite designs.

For more than 6 designvariables,3rd and 4th order approximationsrequire somany design

points to determine the coefficients in thoseapproximationsthat it is more computationally

efficient to develop a number of 2nd order approximations than one approximation of 3rd

or higher order. For 6 or fewer design points, 2nd order approximations may be quite

adequate. However, for those caseswhere one wishes to use a 3rd or 4th order

approximation, the program DESIGN4 wasdevelop. That programgeneratesanaugmented

minimum point design for developing a 4th order approximation.

Previous studies have shown that the quality of approximations using neural networks is
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comparableto those usingpolynomial approximationswhen the number of undetermined

parametersassociatedwith the approximations is the same. Thus, neural networks trained

with designs from DESIGNS or DESIGN4 should offer approximations of comparable

quality to those obtained using polynomial approximations with the same number of

associatedundetermined parameters.
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MEASUREMENTSOF QUALITY OF FIT
BEFOREAND AFTER t-test

PERFORMEDON

y= 10xi-20x2x_+lOx_x_+x_-2x_+s

"Fox's Banana Function"

SECOND ORDER APPROXIMATION

Y= bo + bl xl + b2x2 + b3x_ + b4xlx2 + bsx_

Before t-test After t-test

v: 26.8

Vo : 102.11

Solution of Coefficients

121.2

-836.3

66.7

b: 393.9

-I00

i0

v: 41.8

I/c : 175.82

Solution of Coefficients

0

-814.0

0

b = 352.6

0

0

Figure 25. Significance testing, Example i, 2nd order

approximation



MEASUREMENTSOF QUALITY OF FIT
BEFOREAND AFTER t-test

PERFORMEDON

y= lOx_-2Ox2x[ + lOx_x[ +x[-2xi + 5

"Fox's Banana Function"

THIRD ORDER APPROXIMATION

Before t-test After t-test

v : 2.9 v : 6.4

Va : 53.71 Vc : 112.38

Solution of Coefficients Solution of Coefficients

-12.1

283.7

0

-306.1

0

b= i0

I00

-20

0

0

0

385.0

0

-349.3

0

b= 0

103.8

-17.2

0

0

Figure 26. Significance testing,
approximation

Example i, 3rd order



MEASUREMENTS OF QUALITY OF

BEFORE AND AFTER t-test

PERFORMED ON

FIT

Y=(4+xl)3+sinI_*(xL+l)]+2+x_ + sinI_l+7x2xl

SECOND ORDER APPROX__IATION

2 b5x_Y=bo+blxl +b2x2+b3x1+b4xlx2+

Before t-test After t-test

v: 6.2 v: 8.6

V c: 90.02 V c: 123.67

Solution of Coefficients Solution of Coefficients

b

97.6

35.0

-108.4

19.4

7

44.3

b

96.4

0

-90.9

29.0

0

44.3

Figure 27. Significance testing,

approximation

Example 2, 2nd order



MEASUREMENTS OF QUALITY OF

BEFORE AND AFTER t-test

PERFORMED ON

FIT

Y=(4+xl)3+ sin[_*(x,+l)]+2+x_ +sin(_)+7x2xl

THIRD ORDER APPROXIMATION

Y=bo+blxl +b2xz+b3x[ +b,xlxz+bsx[+b6x 3+bTx[xz+bsxlx[ +bgx_

Before t-test After t-test

v: 0.7 v: 0.7

V c : 27.87 Va : 29.92

Solution of Coefficients Solution of Coefficients

64.1

50.7

28.6

10.8

7

b= -30.7

1.2

0

0

I0

b

64.1

50.8

28.6

10.8

7

l -30.7

0

0

0

I0

Figure 28. Significance testing,

approximation

Example 2, 3rd order
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PROGRAM DESIGNS

Appendix 1

Program DESIGNS

PROGRAM TO GENERATE DESIGNS FOR 2ND ORDER POLYNOMIAL

PROGRAM DIMENSIONED FOR UP TO 20 VARIABLES

RESULTS TO SCREEN AND TO FILE designs.res

DESIGN IN GLOBAL COORDINATES TO FILE designs.run

DEFINITIONS

N = NUMBER OF DESIGN VARIABLES

M = NUMBER OF RANDOM DESIGNS POINTS

DIMENSION X(2000,20)

DIMENSION XBB(20),XBE(20),A(20),B(20)

1 FORMAT(I5,6FI0.6)

2 FORMAT(' PROGRAM GENERATES DESIGNS FOR FITTING 2ND ORDER',

X' POLYNOMIAL')

3 FORMAT(' ENTER NUMBER OF DESIGN VARIABLES')

4 FORMAT(' NUMBER OF DESIGN VARIABLES = N =' , I3)

II FORMAT (6FI0.6)

OPEN(UNIT=7,FILE='designs.res')

OPEN(UNIT=8,FILE='designs.run')

WRITE(6,2)

WRITE(6,3)

READ(5,*)N

WRITE(6,4)N
SET UP TERMS

NPI=N+I

NMI=N-I

M=(N*N+3*N+2)/2
MPI=M+I

--C

C ZERO DESIGN MATRIX

DOIOOI=I,M

_ DOI00J=I,N

i00 X(I,J)=0.
II=0

C. oeeoe,.,.eeeeo.,..leeee,,,,,,,tl,oeeleoee

--C

C

C

--C

C

--C

C

GENERATE THE FIRST N+I POINTS FOR FITTING A LINEAR FUNCTION

THE FIRST POINT IS WHEN ALL X'S ZERO, ALREADY DONE

GENERATE NEXT N POINTS

DOI01I=I,N

II=I+l

_ i01 X(II,I)=I.

C

Ce,.e.eee.oo,e.ooooo,,eoooeeeoeoee'ooo''''"

GENERATE NEXT N POINTS

THE 2N+I POINTS THUS GENERATED WILL ALLOW ADDING SQUARED TERMS

DOI02I=I,N
- II=I+N+I

102 X(II,I)=-I.

C

Coo.t.o,e,,ee.,,..o..eoeoee.oeeo-'ooeeeeo'e

C

C

C

--C

C

C

GENERATE NEXT N(N-I)/2 POINTS

THE (N*N+3*N+2)/2 POINTS THUS GENERATED WILL ALOW ADDING CROSS

PRODUCT TERMS. WE WILL THEN HAVE COMPLETE 2ND ORDER POLYNOMIAL

APPROXIMATION



ILAST=2*N+I

IDO=N-I

J=l

-- JJ=2

103 CONTINUE

DOI04I=I,IDO

_ II=I+ILAST

X(II,J)=I.

X(II,JJ)=I.
JJ=JJ+l

104 CONTINUE

ILAST=ILAST+IDO

IDO=IDO-I

-- J=J+l

JJ=J+l

IF(J.LE.NMI)GOTOI03

_C
C

C

IF WE GOT HERE WE HAVE DEVELOPED THE MINIMUM POINT DESIGN

WRITE(6,*)' WE HAVE GENERATED ',II,' POINTS IN THE MIN PT DESIGN'

WRITE(7,*)' WE HAVE GENERATED ',II,' POINTS IN THE MIN PT DESIGN'

WRITE(6,*)' DESIGN POINTS WRITTEN TO FILE designs.res'

C

--C DEVELOP DESIGN POINTS TO AUGMENT THE MINIMUM POINT DESIGN

C READ IN THE NUMBER OF RANDOM DESIGN POINTS TO BE DEVELOPED

WRITE(6,*)' ENTER THE NUMBER OF RANDOM GENERATED DESIGN PTS',

X' DESIRED=M'

READ(5,*)M

WRITE(6,*)' NUMBER OF RANDOM DESIGN POINTS M=',M

WRITE(7,*)' NUMBER OF RANDOM DESIGN POINTS M=',M

-- WRITE(6,*)' IFLAG IS ANY POSITIVE INTEGER USED TO START RANDOM',

X' PROCESS'

WRITE(6,*)' ENTER IFLAG'

_ READ(5,*)IFLAG

WRITE(6,*)' IFLAG=',IFLAG

WRITE(7,*)' IFLAG=',IFLAG

DO850I=I,M

-- II=II+l

DO851J=I,N

IFLAG=IFLAG+I

-- XDUM=RAND (IFLAG)

X(II,J)=2.*XDUM-I.
851 CONTINUE

850 CONTINUE

C

C

--C

C

C

C

C

IF WE GOT HERE WE HAVE FINISHED GENERATING THE RANDOM DESIGN PTS

WRITE(6,*)' RANDOM DESIGN POINTS WRITTEN TO FILE designs.res'

PRINT OUT THE MINIMUM POINT MATRIX IN LOCAL COORDINATES

WRITE(7,*)' DESIGN MATRIX IN LOCAL COORDINATES'

ITOTAL=II

DO700I=I,ITOTAL

WRITE(7,1)I, (X(I,J),J=I,N)

700 CONTINUE

SEE IF WE ARE TO GENERATE DESIGNS IN GLOBAL COORDINATES

WRITE(6,*)' ITEST=I IF DESIGN POINTS ARE TO BE IN GLOBAL',

X' COORDINATES'

WRITE(6,*)' OTHERWISE, ITEST=0'



-C

_C
C
C

861

860

863
862

1301

1202

970

WRITE(6,*)' ENTER ITEST'
READ(5,*)ITEST
IF(ITEST.NE.I)GOTO860
IF WE GOT HERE WE ARE TO GENERATEDESIGNS IN GLOBAL COORDINATES
WRITE(6,*)' ENTER LOWERAND UPPERRANGEON EACH DESIGN VARIABLE'
WRITE(6,*)' i.e. ENTER XBB(I) TO XBE(I)'
DO861I=I,N
READ(5,*) XBB(I) , XBE(I)
WRITE(6, *) ' I, XBB (I) ,XBE (I) =', I, XBB (I) ,XBE (I)

WRITE(7,*)' I,XBB(I) ,XBE(I)=',I,XBB(I) ,XBE(I)

CONTINUE

GOTO862

CONTINUE

IF WE GOT HERE LOWER BOUND VARIABLE

IF WE GOT HERE UPPER BOUND VARIABLE

DO863I=I,N

XBB(I) =-i.

XBE(I)=I.

CONTINUE

CONTINUE

WRITE(7,*)' I,XBB(I),XBE(I),A(I),B(I)'

DOI301I=I,N

A(I) = (XBE (I)-XBB (I))/2.

B(I)=(XBE(I)+XBB(I))/2.

WRITE(7,*)I,XBB(I),XBE(I),A(I),B(I)

CONTINUE

DOI202I=I,ITOTAL

DOI202J=I,N

X (I, J) =A(J) *X(I, J) +B (J)

WRITE(6,*)' DESIGN IN GLOBAL COORDINATES WRITEN

WRITE(6,*)' DESIGN IN GLOBAL COORDINATES WRITEN

WRITE(7,*)' DESIGN IN GLOBAL COORDINATES'

WRITE(8,*)ITOTAL

DO970I=I,ITOTAL

WRITE(7,1)I, (X(I,J),J=I,N)

WRITE(8,11) (X(I,J),J=I,N)

CONTINUE

STOP

END

IN GLOBAL COORDINATES IS -i

IN GLOBAL COORDINATES IS 1

TO designs.res'

TO designs.run'



C
C

-C

C

C

C

C

C

C

-C

C

C

PROGRAM DESIGN4

Appendix 2

Program DESIGN4

PROGRAM TO GENERATE DESIGNS FOR 4TH ORDER POLYNOMIAL

PROGRAM DIMENSIONED FOR UP TO 6 VARIABLES

RESULTS TO SCREEN AND TO FILE design4.res

DESIGN IN GLOBAL COORDINATES TO FILE design4.run

DEFINITIONS

N = NUMBER OF DESIGN VARIABLES

M = NUMBER OF RANDOM DESIGNS POINTS

DIMENSION X(2000,6)

DIMENSION XBB(IO),XBE(10),A(10),B(10)

1 FORMAT(IL,6FI0.6)

2 FORMAT(' PROGRAM GENERATES DESIGNS FOR FITTING 4TH ORDER',

X' POLYNOMIAL')

3 FORMAT(' ENTER NUMBER OF DESIGN VARIABLES')

4 FORMAT(' NUMBER OF DESIGN VARIABLES = N =', I3)

ii FORMAT (6FI0.6)

OPEN(UNIT=7,FILE='design4.res')

OPEN(UNIT=8,FILE='design4.run')

WRITE(6,2)

WRITE(6,3)

READ(5,*)N

WRITE(6,4)N

IF (N. EQ. 6) GOTO601

IF (N. EQ. 5) GOTOL01

IF (N. EQ. 4) GOTO401

IF (N. EQ. 3) GOT0301

IF (N. EQ. 2) GOTO201

IF (N. EQ. i) GOTOI01

WRITE(6,*)' PROGRAM CAN NOT DO MORE THAN 6 DESIGN VARIABLES'

WRITE(7,*)' PROGRAM CAN NOT DO MORE THAN 6 DESIGN VARIABLES'

STOP

DEVELOP 3 FACTORIAL DESIGN TO GET 4 DESIGN VARIABLE PRODUCT TERMS

i01 CONTINUE

-- II=0

DOI00II=I,101,50

II=II+l

-- X(II, i)=FLOAT (Ii-51)/i00.

i00 CONTINUE

GOTO701

201 CONTINUE

II=0

DO200II=I,101,50

D020012=I,I01,50

-- II=II+l

X (II, i) =FLOAT(II-51)/i00.

X (II, 2) =FLOAT(X2-51)/i00.

-- 200 CONTINUE

GOTO701

301 CONTINUE

II=0

DO300II=I,101,50

DO30012=I,I01,50

DO30013=I,I01,50

- II=II+l

X(II, I) =FLOAT (Ii-51)/I00.

X(II, 2) =FLOAT (I2-51)/i00.



C

--C
C
C

300

401

400

501

500

601

6O0

701

703

702

X(II, 3) =FLOAT(I3-51)/i00.
CONTINUE
GOTOT01
CONTINUE
II=0
DO400II=I,I01,50
D040012=I,I01,50
DO40013=I,I01,50
DO40014=I,I01,50
II=II+l
X(II,I)=FLOAT(II-51)/100.
X(II,2)=FLOAT(I2-51)/100.
X(II,3)=FLOAT(I3-51)/100.
X (II, 4) =FLOAT(I4-51)/i00.
CONTINUE
GOTO701
CONTINUE
II=0
DO500II=I,I01,50
DO50012=I,I01,50
DO50013=I,I01,50
DO50014=I,I01,50
DO50015=I,I01,50
II=II+l
X(II, i)=FLOAT (Ii-51)/i00.
X(II, 2)=FLOAT (I2-51)/I00.
X (II, 3) =FLOAT(I3-51)/I00.
X(II, 4) =FLOAT(I4-51)/I00.
X(II, 5) =FLOAT(I5-51)/I00.
CONTINUE
GOTO701

CONTINUE
II=O
DO600II=I,I01,50
DO60012=I,I01,50
DO60013=I,I01,50
DO60014=I,I01,50
DO60015=I,I01,50
DO60016=I,I01,50
II=II+l
X (II, i) =FLOAT(II-51)/i00.
X (II, 2) =FLOAT(I2-51)/i00.
X (II, 3) =FLOAT(I3-51)/i00.
X (II, 4) =FLOAT(I4-51)/i00.
X (II, 5) =FLOAT(I5-51)/i00.
X (II, 6) =FLOAT(I6-51)/i00.
CONTINUE
GOTO701
CONTINUE

ENTER REST OF POINTS IN THE STAR

DO702I=I,N
II=II+l
DO703J=I,N
X(II,J)=0.
X(II,I)=I.
CONTINUE
DO704I=I,N

FORMATION



C
C
C
C

II=II+l
DO705J=I,N

705 X(II,J)=0.
X(II, I)=-l.

704 CONTINUE

ENTER TERMSTO CALCULATE COEFFICIENT ASSOCIATED WITH THE TERM
X(I)**3*X(J)

NMI=N-I
-- IDO=N-I

J=l
JJ=2

-- 803 CONTINUE
DO804I=I,IDO
II=II+l
X(II,J)=I.
X(II,JJ)=.5
II=II+l
X(II,J)=.5

-- X(II,JJ)=I.
JJ=JJ+l

804 CONTINUE
_ IDO=IDO-I

J=J+l
JJ=J+l
IF (J. LE. NMI) GOTO803

--C
C
C

IF WE GOT HERE WE HAVE DEVELOPEDTHE MINIMUM POINT DESIGN

WRITE(6,*)' WE HAVE GENERATED',II,' POINTS IN THE MIN PT DESIGN'
WRITE(7,*)' WE HAVE GENERATED',II,' POINTS IN THE MIN PT DESIGN'
WRITE(6,*)' DESIGN POINTS WRITTEN TO FILE design4.res'

_C
C DEVELOP DESIGN POINTS TO AUGMENTTHE MINIMUM POINT DESIGN
C READ IN THE NUMBEROF RANDOMDESIGN POINTS TO BE DEVELOPED

WRITE(6,*)' ENTER THE NUMBEROF RANDOM GENERATED DESIGN PTS',

-- X' DESIRED=M'

READ(5,*)M

WRITE(6,*)' NUMBER OF RANDOM DESIGN POINTS M=',M

-- WRITE(7,*)" NUMBER OF RANDOM DESIGN POINTS M=',M

WRITE(6,*)' IFLAG IS ANY POSITIVE INTEGER USED TO START RANDOM',

X' PROCESS'

_ WRITE(6,*)' ENTER IFLAG'

READ(5,*)IFLAG

WRITE(6,*)' IFLAG=',IFLAG

WRITE(7,*)' IFLAG=',IFLAG

-- DO850I=I,M
II=II+l

DO851J=I,N

-- IFLAG=IFLAG+I

XDUM=RAND (I FLAG)

X (II, J) =2.*XDUM-I.

851 CONTINUE

850 CONTINUE

C

C

C

C

IF WE GOT HERE WE HAVE FINISHED GENERATING THE RANDOM DESIGN PTS

WRITE(6,*)' RANDOM DESIGN POINTS WRITTEN TO FILE design4.res'

PRINT OUT THE MINIMUM POINT MATRIX IN LOCAL COORDINATES



--C

C

C

WRITE(7,*)' DESIGN MATRIX IN LOCAL COORDINATES'

ITOTAL=II

DO7OOI=I,ITOTAL

WRITE(7,1)I, (X(I,J),J=I,N)

700 CONTINUE

SEE IF WE ARE TO GENERATE DESIGNS IN GLOBAL COORDINATES

WRITE(6,*)' ITEST=I IF DESIGN POINTS ARE TO BE IN GLOBAL',

X' COORDINATES'

-- WRITE(6,*)' OTHERWISE, ITEST=0'

WRITE(6,*)' ENTER ITEST'

READ(5,*)ITEST

_ IF(ITEST.NE.I)GOTO860
C IF WE GOT HERE WE ARE TO GENERATE DESIGNS IN GLOBAL COORDINATES

WRITE(6,*)' ENTER LOWER AND UPPER RANGE ON EACH DESIGN VARIABLE'

WRITE(6,*)' i.e. ENTER XBB(I) TO XBE(I)'

DO861I=I,N

READ (5, *) XBB (I) ,XBE (I)

WRITE(6,*)' I,XBB(I),XBE(I) =',I,XBB(I),xBE(I)

-- WRITE(7,*)' I,XBB(I),XBE(I)=',I,XBB(I),XBE(I)

861 CONTINUE

GOTO862

860 CONTINUE

--C

C

C

IF WE GOT HERE LOWER BOUND VARIABLE IN GLOBAL COORDINATES IS -I

IF WE GOT HERE UPPER BOUND VARIABLE IN GLOBAL COORDINATES IS 1

DO863I=I,N

XBB (I) =-i.

XBE(I)=I.
-- 863 CONTINUE

862 CONTINUE

WRITE(7,*)' I,XBB(I),XBE(I),A(I),B(I)'

DOI301I=I,N

A(I)=(XBE(I)-XBB(I))/2.

B (I) = (XBE (I) +XBB (I))/2.

WRITE(7,*)I,XBB(I),XBE(I),A(I),B(I)

-- 1301 CONTINUE

DOI202I=I,ITOTAL

DOI202J=I,N

-- 1202 X(I,J)=A(J)*X(I,J)+B(J)

WRITE(6,*)' DESIGN IN GLOBAL COORDINATES WRITEN TO design4.res'

WRITE(6,*)' DESIGN IN GLOBAL COORDINATES WRITEN TO design4.run'

WRITE(7,*)' DESIGN IN GLOBAL COORDINATES'

WRITE(8,*)ITOTAL

DO970I=I,ITOTAL

WRITE(7,1)I, (X(I,J),J=I,N)

-- WRITE(8,11) (X(I,J),J=I,N)

970 CONTINUE

STOP

_ END



Appendix 3

Program NEWPSI

w

c

c

c

--c

c

c

c

c

c

c

--c

c

c

_c

c

c

c

--C

c

c

C

c

--c

c

c

c

PROGRAM newpsi

the program develops a polynomial approximation which

may be either under, exactly, or over determined

it can handle up to 15 design variables as programmed.

The order of polynomial it can handle is as follows:

i. one one design variable, up to a 20th order polynomial

2. two design variables, up to 5th order polynomial

3. for 2-15 design variables, a 2nd order polynomial

One can use up to 250 designs to train the approximation.

It can handle up to 2000 grid points

IMPLICIT REAL*8 (A-H,O-Z)

dimension x(250,15),y(250),a(250,136)

dimension yhat(250)

dimension b(136)

dimension xx(2000,15),yy(2000),abig(2000,136)

dimension yyhat(2000)

1 FORMAT (9F8.4)

2 FORMAT(3FI2.6)

3 FORMAT(FI0.6,1H,,FI0.6,1H,,FI0.6,1H,,FI0.6,1H,,FI0.6,1H,,FI0.6,
XlH,,FI0.6)

OPEN(UNIT=5,FILE='newpsi.dat,)

OPEN(UNIT=7,FILE='newpsi.res,)

OPEN(UNIT=8,FILE='newpsi.plot')

read in data

read in the print code

read(5,*)ip

enter number of design variables, nd

read(5,*)nd

enter THE DEGREE OF POLYNOMIAL TO BE CONSIDERED, np

READ(5,*)np

ENTER NUMBER OF DESIGNS FOR PROBLEM,M

READ(5,*)M

write(6,*)' print code ip=',ip

write(6,*)' number of design variables, nd=' nd



c
c

c

c

C

--C

C

C

C

C

C

C

c

c

c

write(6,*)' degree of polynomial being considered=np=',np

write(6,*)' number of designs m=',m

write(7,*)' print code ip=',ip

write(7,*)' number of design variables, nd=',nd

write(7,*)' degree of polynomial being considered=np=',np

write(7,*)' number of designs m=',m

read in designs and set up matrix a

write(7,*)' x(i,j),y(i)'

DOIOII=I,M

read(5,*) (x(i,j),j=l,nd),y(i)

write(7,*) (x(i,j),j=l,nd),y(i)
I01 continue

set up the coefficient matrix, a, in the matrix equation

y=a x

call geta(ip,m,nd,np,n,x,a)

SEE WHETHER SYSTEM IS UNDER,EXACTLY, OR OVER DETERMINED

IF(M.GE.N)GOTO400

IF WE GOT HERE WE ARE UNDER-DETERMINED

WRITE(6,*)' SYSTEM IS UNDER-DETERMINED'

WRITE(7,*)" SYSTEM IS UNDER-DETERMINED'

CALL PSI(ip,M,N,A,Y,B)

GOT0402

400 CONTINUE

IF(M.GT.N)GOTO401

IF WE GOT HERE WE ARE EXACTLY DETERMINED

WRITE(6,*)' SYSTEM IS EXACTLY DETERMINED'

WRITE(7,*)' SYSTEM IS EXACTLY DETERMINED'

CALL EXACT(ip,M,A,Y,B)

GOTO402

401 CONTINUE

IF WE GOT HERE WE ARE OVER-DETERMINED

WRITE(6,*)' SYSTEM IS OVER-DETERMINED'

WRITE(7,*)' SYSTEM IS OVER-DETERMINED'

CALL OVER(ip,M,N,A,Y,B)
402 CONTINUE

EVALUATE APPROXIMATION AT DESIGNS

WRITE(6,*)' MATRIX OF COEFFICIENTS, B(I)'

WRITE(7,*)' MATRIX OF COEFFICIENTS, B(I)'

WRITE(6,*) (B(I),I=I,N)

WRITE(7,*) (B(I),I=I,N)

WRITE(7,*)' MATRICES Y(I) AND YHAT(I)'

recalculate matrix a

call geta(ip,m,nd,np,n,x,a)

calculate approximation at designs and print results

write(7,*)' y(i),yhat(i)'

DOI02I=I,M

YHAT (I) =0.

DOI03J=I,N



C
c

c
--c

c

c

c

c

c

c

c

--c

c

c

--c

c

c

c

c

c

c

--c

c

c

c

_c

c

c

--c

c

c

103

102

601

603

602

yhat (i) =yhat (i) +a (i, j) *b(j)
CONTINUE

WRITE (7, *) Y (I) ,YHAT (I)
CONTINUE

evaluate function at grid

read(5,*)ng

write(6,*)' number of designs on grid

write(7,*)' number of designs on grid

write(7,*)' xx(i,j),yy(i)'

DO601I=l,ng

read(5,*) (xx(i,j),j=l,nd),yy(i)

write(7,*) (xx(i,j),j=l,nd),yy(i)

continue

call getabg(ip,ng,nd,np,n,xx,abig)

write(7,*)' yy(i),yyhat(i) at grid'

DO602I=l,ng

YYHAT (I) =0.

DO603J=I,N

yyhat (i) =yyhat (i) +abig (i, j) *b(j)

CONTINUE

WRITE(7,*) YY (I) ,YYHAT (I)

= ngn',ng

= ngn',ng

write the plot file

write(8,*) (xx(i,j),j=l,nd),yyhat(i)

CONTINUE

calculate statistical terms

call statit(m,y,yhat,ng,yy,yyhat)

STOP

END

subroutine geta(ip,m,nd,np,n,x,a)

This subroutine generates the matrix a where the matrix

equation is y= a b. Here y are the training functions,

b are undetermined coefficients. The algorithm is programmed
to handle

i. any level of approximation for one design variable

2. up to 5th order polynomial in two design variables

3. quadratic approximation in more than two design variabaales

IMPLICIT REAL*8 (A-H,O-Z)

dimension x(250,15),a(250,136)

do for each design

do300i=l,m

if nd is not equal to 1 go to 400



C

c

--C

C

C

_C

C

c

c

C

--c

C

--c

c

c

c

C

C

C

c

_C

C

C

C

C

_C

C

C

C

C

C

C

C

201

400

if (nd. ne. i) goto400

here we have nd=l, i.e. one design variable

we will develp a's for all np's

a(i,l)=l.

j=l

do20lk=l, np

j=j+l

a (i, j) =x(i, i) **k

continue

n=np+l

goto301

************************************

continue

if nd is not equal to 2 go to 500

if(nd.ne.2)goto500

if we got here we have 2 design variables

x1=x(i,l)
x2=x(i,2)

*********************

add the constant and linear terms

a(i,l)=l.

a(i,2)=xl

a (i, 3 ) =x2

n=3

if (np. it. 2) goto301

add the 2nd order terms

a(i,4)=xl**2

a(i,5)=xl*x2

a(i,6)=x2**2

n=6

if(np.lt.3)goto301

add the cubic terms

a(i,7)=xl**3

a(i,8)=xl**2*x2

a(i,9)=xl*x2**2

a(i,lO)=x2**3



c

--c

c

c

_c

w

c

c

_c
c

c

c

c

c

--c

c

c

c

c

--c

c

c

c

c

c

--c

c

c

c

c

500

501

n=lO

if(np.lt.4)goto301

add the 4th order terms

a(i,ll)=xl**4

a(i,12)=xl**3*x2

a(i,13)=xl**2*x2**2

a(i,14)=xl*x2**3

a(i,15)=x2**4

n=15

if(np.lt.5)goto301

add the 5th order terms

a(i,

a(i,

a(i,

a(i,

a(i,

16)=xi*,5

17)=xl**4*x2

18)=xl**3*x2**2

19)=xl**2*x2**3

20)=xl*x2**4

a (i, 21) =x2..5
n=21

if (np. It. 6) goto301

algorithm not programed for polynomials of order larger than 5

write(6,*)' for two design variables, algorithm not programed for'

write(6,*)' polynomials of order larger than 5'

write(7,*)' for two design variables, algorithm not programed for'

write(7,*)' polynomials of order larger than 5'

stop

continue

if we got here number of design variables >2

enter constant and linear terms

a(i,l)=l.

j=l

do5Olk=l, nd

j=j+l

a(i, j)=x(i,k)
continue

n=j

if (np. it. 2) goto301

********************



c

c

c

--c

c

c

_c

c

--c

c

c

_ C

c

c

c

c

c

c

c

c

c

c

--c

c

c

--c

c

c

c

c

c

c

--c

502

301

302

300

enter the quadratic terms

do502k=l, nd

do502L=k, nd

j=j+l

a(i, j) =x(i,k) *x (i, L)
continue

n=j

if (np. it. 3) goto301

algorithm not programmed for more than quadratic approximation

when number of design variables >2

write(6,*)' algorithm not programmed for more than quadratic'

write(6,*)' approximation when number of design variables >2'

write(7,*)' algorithm not programmed for more than quadratic'

write(7,*)' approximation when number of design variables >2"

stop

print out some results

continue

if (ip. it. 4) goto302

write(6,*)' a(i,j)', (a(i,j),j=l,n)

write(6,*)' '

write(7,*)' a(i,j)', (a(i,j),j=l,n)

write(7,*)' '
continue

continue

write (6, *) '

write(7,*)'

number of

number of

undetermined

undetermined

coef=n=',n

coef=n=',n

return

end

subroutine getabg(ip,m,nd,np,n,x,a)

This subroutine generates the matrix a where the matrix

equation is y= a b. Here y are the training functions,

b are undetermined coefficients. The algorithm is programmed
to handle

i. any level of approximation for one design variable

2. up to 5th order polynomial in two design variables

3. quadratic approximation in more than two design variabaales

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(2000,136)



c

C

--c

C

_c

c

c

_c

C

C

--c

C

C

_C

C

C

C

C

--C

C

_c

c

C

C

--C
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400

DIMENSION X(2000,15)

do for each design

do300i=l,m

if nd is not equal to 1 go to 400

if(nd.ne.l)goto400

here we have nd=l, i.e. one design variable

we will develp a's for all np's

a(i,l)=l.

j=l

do201k=l, np

j=j+l

a {i, j) =x _i, i) **k

continue

n=np+l

goto301

************************************

continue

if nd is not equal to 2 go to 500

if(nd.ne.2)goto500

**************************************************************

**************************************************************

if we got here we have 2 design variables

xl=x(i,l)

x2=x(i,2)

*********************

add the constant and linear terms

a(i,l)=l.

a(i,2)=xl

a(i,3)=x2

n=3

if(np.lt.2)goto301

ee******eeeee*******

add the 2nd order terms

a(i,4)=xl**2

a(i,5)=xl*x2

a(i,6)=x2**2

n=6

if(np.lt.3)goto301
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add the cubic terms

a(i,7)=xl**3

a(i,8)=xl**2*x2

a(i,9)=xl*x2**2

a(i,lO)=x2**3

n=lO

if(np.lt.4)goto301

add the 4th order terms

a(i,ll)=xl**4

a(i,12)=xl**3*x2

a(i,13)=xl**2*x2**2

a(i,14)=xl*x2**3

a(i,15)=x2**4

n=15

if(np.lt.5)goto301

add the 5th order terms

a(i,16)=xl**5

a(i,17)=xl**4*x2

a(i,18)=xl**3*x2**2

a(i,19)=xl**2*x2**3

a(i,20)=xl*x2**4

a(i,21)=x2**5

n=21

if (np. it. 6) goto301

******************

algorithm not programed for polynomials of order larger

write(6,*)' for two design variables, algorithm not

write(6,*)' polynomials of order larger than 5'

write(7,*)' for two design variables, algorithm not

write(7,*)' polynomials of order larger than 5'

stop

continue

if we got here number of design variables >2

enter constant and linear terms

a(i,l)=l.

j=l

than 5

programed for'

programed for'
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501

502

301

302

300

do50 ik=l, nd

j=j+l

a (i, j) =x (i,k)
continue

n=j

if (np. it. 2) goto301

enter the quadratic terms

do502k=l, nd

do502L=k, nd

j=j+l

a(i, j)=x(i,k) *x(i,L)
continue

n=j

if (np. it. 3) goto301

algorithm not programmed for more than quadratic approximation

when number of design variables >2

write(6,*)' algorithm not programmed for more than quadratic'

write(6,*)' approximation when number of design variables >2'

write(7,*)' algorithm not programmed for more than quadratic'

write(7,*)' approximation when number of design variables >2'

stop

print out some results

continue

if (ip. It. 4) goto302

write(6,*)' a(i,j)', (a(i,j),j=l,n)

write(6,*)' '

write(7,*)' a(i,j)', (a(i,j),j=l,n)

write(7,*)' '
continue

continue

write(6,*)'

write(7,*)'

number

number

of undetermined coef=n=',n

of undetermined coef=n=',n

return

end

SUBROUTINE PSI(IP,M,N,DUMA,Y,XX)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DUMa (250,136)

A(21,21),B(21,21),D(21,21),DI(21,21),BPI(21,21)

C(21,21),FI(21,21),CPI(21,21),H(21,21),HI(21,21)

API (21,21)

F(21,21)

IPIVOT (21) ,IWK (21,2)
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--C
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90

50

i00

51

i01

52

300

53

DIMENSION y(250)

DIMENSION XX(21)

THIS SUBROUTINE CALCULATES PSEUDO INVERSE

M = ROW DIMENSION OF A LESS THAN N

N = COLUMN DIMENSION OF A

COPY DUMA TO A

DO90I=I,M

DO90J=I,N

A(I,J) =DUMA (I, J)

OF MATRIX A

PRINT MATRIX A

if(ip.lt.4)goto50

WRITE(6,*)' MATRIX A'

WRITE(7,*)' MATRIX A'

CALL WRITIT(M,N,A)
continue

SET UP MATRIX B

DOI00I=I,M

DOI00J=I,M

B(I,J) =A(I, J)

if(ip.lt.4)goto51

WRITE(6,*)' MATRIX B'

WRITE(7,*)' MATRIX B'

CALL WRITIT(M,M,B)
continue

GET D = B TRAN * B

DOI01I=I,M

DOI01J=I,M

D(I,J)=0.

DOI01K=I,M

D (I, J) =D (I, J) +B (K, I) *B (K, J)

if(ip.lt.4)goto52

WRITE(6,*)' MATRIX D'

WRITE(7,*)' MATRIX D'

CALL WRITIT(M,M,D)

continue

GET INVERSE OF D=DI

MAX=21

MDUM=0

IOP=0

CALL MATINV(MAX,M,D,MDUM,DI,IOP,DETERM, ISCALE,IPIVOT,IWK)

WRITE(6,*)' DETERM=',DETERM,' ISCALE=',ISCALE

WRITE(7,*)' DETERM=',DETERM,' ISCALE=',ISCALE

DO300I=I,M

DO300J=I,M

DI (I,J)=D(I,J)

if(ip.lt.4)goto53

WRITE(6,*)' MATRIX DI'

WRITE(7,*)' MATRIX DI'

CALL WRITIT(M,M,DI)
continue



--C
C
C

--C
C
C

B

C

C

C

--C

C

C

C

C

_C

102

54

103

55

104

56

301

57

105

GET PSEUDO INVERSE OF B = BPI = DI * B TRANS

DOI02I=I,M

DO102 JQ=I,M

BPI (I,JQ) =0.

DOI02J=I,M

BPI (I,JQ) =BPI (I,JQ) +DI (I,J) *B (JQ,J)

if(ip.lt.4)goto54

WRITE(6,*)' MATRIX BPI'

WRITE(7,*)' MATRIX BPI'

CALL WRITIT(M,M,BPI)

continue

SET UP MATRIX C = A

DOI03I=I,M

DOI03J=I,N

C(I,J) =A(I,J)

if(ip.lt.4)goto55

WRITE(6,*)' MATRIX C'

WRITE(7,*)' MATRIX C'

CALL WRITIT(M,N,C)

continue

SET UP MATRIX F = C * C TRANS

DOI04I=I,M

DOI04J=I,M

F(I ,J)=0.

DOI04K=I,N

F(I,J)=F(I,J) +C(I,K) *C (J,K)

if(ip.lt.4)goto56

WRITE(6,*)' MATRIX F'

WRITE(7,*)' MATRIX F'

CALL WRITIT(M,M,F)

continue

GET THE INVERSE OF F = FI

CALL

WRITE(6,*)'

WRITE(7,*)'

DO301I=I,M

DO301J=I,M

FI(I,J)=F(I,J)

if(ip.lt.4)goto57

WRITE(6,*)' MATRIX

WRITE(7,*) ' MATRIX

CALL WRITIT (M, M, FI)

continue

DETERM=',DETERM,'

DETERM=',DETERM, '

MATINV(MAX,M,F,MDUM,FI,IOP,DETERM, ISCALE,IPIVOT,IWK)

ISCALE=',ISCALE

ISCALE=',ISCALE

FI'

FI'

GET THE PSEUDO INVERSE OF C = CPI = C TRANS * FI

DOI05IQ=I,N

DOI05J=I,M

CPI (IQ, J) =0.

DOI05I=I,M

CPI (IQ, J) =CPI (IQ, J) +C (I, IQ) *FI (I, J)

if(ip.lt.4)goto58



C
C
C

C
C

C
C
C

WRITE(6,*)' MATRIX CPI'

WRITE(7,*)' MATRIX CPI'

CALL WRITIT(N,M,CPI)
58 continue

SET UP MATRIX H = PSEUDO INVERSE OF B = BPI

DOI06I=I,M

DOI06J=I,M

106 H(I,J) =BPI (I,J)

if(ip.lt.4)goto59

WRITE(6,*)' MATRIX H'

WRITE(7,*)' MATRIX H'

CALL WRITIT(M,M,H)

59 continue

GET INVERSE OF H = HI

CALL MATINV(MAX,M,H,MDUM,HI,IOP,DETERM,ISCALE, IPIVOT,IWK)

WRITE(6,*)' DETERM=',DETERM,' ISCALE=',ISCALE

WRITE(7,*)' DETERM=',DETERM,' ISCALE=',ISCALE

DO302I=I,M

DO302J=I,M

302 HI (I,J)=H(I,J)

if(ip.lt.4)goto60

WRITE(6,*)' MATRIX HI'

WRITE(7,*)' MATRIX HI'

CALL WRITIT(M,M,HI)

60 continue

GET PSEUDO INVERSE OF A = API = CPI * HI * BPI

DOI07IQ=I,N

DOI07J=I,M

API (IQ, J)=0.

- DOI07I=I,M

DOI07K=I,M

107 API (IQ,J)=API (IQ,J) ++CPI (IQ, I) *HI (I,K) *BPI (K,J)

_ if(ip.lt.4)goto61

WRITE(6,*)' MATRIX API'

WRITE(7,*)' MATRIX API'

CALL WRITIT(N,M,API)

61 continue

C

C

--C

C

GET XX = API * Y

DOI08IQ=I,N

XX(IQ)=0.

DOI08J=I,M

108 XX (IQ) =XX (IQ) +API (IQ, J) *Y (J)

JDUM=I

if(ip.lt.4)goto62

WRITE(6,*)' MATRIX XX'

WRITE(7,*)' MATRIX XX'

CALL WRITIT(N,JDUM,XX)

62 continue

RETURN

END

SUBROUTINE WRITIT(MM,NN,XX)

IMPLICIT REAL*8 (A-H,O-Z)



I00

C

i00

i01

5O

200

201

i01

5O

DIMENSION XX(21,1)
FORMAT(iX)
FORMAT(10F7.2)
WRITE(6, i)
DOI00I=I, MM
WRITE(6,2) (XX(I,J),J=I,NN)
WRITE(7,2) (XX(I,J),J=I,NN)
CONTINUE
RETURN
END
SUBROUTINEEXACT(IP,M,A, Y, B)
IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION a(250,136) ,b(136),y(250)
DIMENSION IPIVOT(250) ,IWK(250,2)
DIMENSION C(136,1)

DOI00I=I,M

C(I, I)=Y(I)

MAX=250

MDUM=I

IOP=0

CALL MATINV(MAX,M,A,MDUM,C,IOP,DETERM,ISCALE,IPIVOT,IWK)

WRITE(6,*)' DETERM=',DETERM,' ISCALE=',ISCALE

WRITE(7,*)' DETERM=',DETERM," ISCALE=',ISCALE

DOI01I=I,M

B(I)=C(I, i)

CONTINUE

if(ip.lt.4)gotoS0

WRITE(6,*)' MATRIX B', (B(I),I=I,M)

WRITE(7,*)' MATRIX B', (B(I),I=I,M)
continue

RETURN

END

SUBROUTINE OVER(IP,M,N,A,Y,B)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION a(250,136),b(136) ,y(250)

DIMENSION IPIVOT(136) ,IWK(136,2)

DIMENSION ATA(136,136),ATY(136,1)

DO2OOI=I,N

DO200J=I,N

ATA(I,J)=0.

DO200K=I,M

ATA(I, J) =ATA(I, J) +A(K, I) *A(K, J)

DO2OII=I,N

ATY(I,I)=0.

DO201K=I,M

ATY (I, i) =ATY (I, i) +A(K, I) *Y (K)

MAX=I36

MDUM=I

IOP=0

CALL MATINV(MAX,N,ATA,MDUM,ATY,IOP,DETERM, ISCALE,IPIVOT,IWK)

WRITE(6,*)' DETERM=',DETERM,' ISCALE=',ISCALE

WRITE(7,*)' DETERM=',DETERM,' ISCALE=',ISCALE

DOI01I=I,N

B (I) =ATY (I, i)
CONTINUE

if(ip.lt.4)gotoS0

WRITE(6,*)' MATRIX B'

WRITE(7,*)' MATRIX B'
continue

, (B(I),I=I,N)

, (B(I),I=I,N)
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RETURN

END

subroutine statit(m,y,yhat,ng,yy,yyhat)

implicit real*8 (a-h,o-z)

This subroutine calculates quality of approximation measures

this subroutine calculates v, r2, and vg

dimension y(250) ,yhat(250)

dimension yy(2000),yyhat(2000)

yb=0.

dol00id=l,m

yb=yb+y(id)
continue

yb=yb/float(m)
error=0.

dol01id=l,m

error=error+(y(id)-yhat(id))**2

continue

v=sqrt(error/float(m))/yb*(lO0.)

write(7,*)' error over designs=error = ',error

write(7,*)' average y over design = yb =',yb

write(6,*)' coefficient v (as %)= ',v

write(7,*)' coefficient v (as %)= ',v
dn=0.

dd=0.

do7769id=l,m

dn=dn+(yhat(id)-yb)**2

dd=dd+(y(id)-yb)**2

continue

r2=dn/dd*(lO0.)

write(6,*)' coefficient r2 (as%) =

write(7,*)' coefficient r2 (as%) =

get vg

perror=O.

yg=0.

do155id=l,ng

yg=yg+yy(id)

perror=perror+(yy(id)-yyhat(id))**2
continue

yg=yg/float(ng)

vg=sqrt(perror/float(ng))/yg*(100.)

write(7,*)'

write(7,*)'

write(6,*)'

write(7,*)'

return

end

sum of residuals squared=perror=',perror

average y over grid = yg =',yg

coefficient vg = ',vg

coefficient vg = ',vg

SUBROUTINE MATINV(MAX,N,A,M,B,IOP,DETERM,ISCALE,IPIVOT,IWK)

implicit real*8 (a-h,o-z)

MATINV 2

C FI.3 MATINV 3

**************************************************************************** 4

-C MATINV 5

C PURPOSE - MATINV INVERTS A REAL SQUARE MATRIX A. MATINV 6

IN ADDITION THE ROUTINE SOLVES THE MATRIX MATINV 7
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C
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C

--C
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--C
C
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C
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--C
C
C

--C
C
C
C
C
C
C

--C
C
C

USE

EQUATIONAX=B,WHEREB IS A MATRIX OF CONSTANT
VECTORS. THERE IS ALSO AN OPTION TO HAVE THE
DETERMINANTEVALUATED. IF THE INVERSE IS NOT
NEEDED, USE GELIM TO SOLVE A SYSTEMOF SIMULTANEOUS
EQUATIONSAND DETFAC TO EVALUATEA DETERMINANT
FOR SAVING TIME AND STORAGE.

- CALL MATINV(MAX,N,A,M,B,IOP,DETERM, ISCALE,IPIVOT,IWK)

MAX - THE MAXIMUMORDEROF A AS STATED IN THE
DIMENSION STATEMENTOF THE CALLING PROGRAM.

N - THE ORDEROF A, I.LE.N.LE.MAX.

A - A TWO-DIMENSIONALARRAY OF THE COEFFICIENTS.
ON RETURNTO THE CALLING PROGRAM,A INVERSE
IS STOREDIN A.
A MUST BE DIMENSIONED IN THE CALLING PROGRAM
WITH FIRST DIMENSION MAX AND SECONDDIMENSION
AT LEAST N.

M - THE NUMBEROF COLUMNVECTORSIN B.
M=0 SIGNALS THAT THE SUBROUTINEIS
USED SOLELY FOR INVERSION,HOWEVER,
IN THE CALL STATEMENTAN ENTRY CORRE-
SPONDINGTO B MUST BE PRESENT.

B - A TWO-DIMENSIONALARRAY OF THE CONSTANT
VECTORB. ON RETURNTO CALLING PROGRAM,
X IS STOREDIN B. B SHOULDHAVE ITS FIRST
DIMENSION MAX AND ITS SECONDAT LEAST M.

IOP - COMPUTEDETERMINANTOPTION.
IOP=0 COMPUTESTHE MATRIX INVERSE AND

DETERMINANT.
IOP=I COMPUTESTHE MATRIX INVERSE ONLY.

DETERM- FOR IOP=0-IN CONJUNCTIONWITH ISCALE
REPRESENTSTHE VALUE OF THE DETERMINANT
OF A, DET(A),AS FOLLOWS.

DET(A) = (DETERM)(i0,*i00 (ISCALE))
THE COMPUTATIONDET(A) SHOULDNOT BE
ATTEMPTEDIN THE USER PROGRAMSINCE IF
THE ORDEROF A IS LARGERAND/OR THE
MAGNITUDEOF ITS ELEMENTSARE LARGE(SMALL),
THE DET(A) CALCULATIONMAY CAUSEOVERFLOW

(UNDERFLOW). DETERMSET TO ZERO FOR
SINGULAR MATRIX CONDITION, FOR EITHER
IOP=I,OR 0. SHOULDBE CHECKEDBY PROGRAMER
ON RETURNTO MAIN PROGRAM.

ISCALE - A SCALE FACTORCOMPUTEDBY THE
SUBROUTINETO AVOID OVERFLOWOR
UNDERFLOWIN THE COMPUTATIONOF
THE QUANTITY,DETERM.

IPIVOT - A ONE DIMENSIONAL INTEGER ARRAY
USED BY THE SUBPROGRAMTO STORE
PIVOTOL INFORMATION. IT SHOULDBE
DIMENSIONEDAT LEAST N. IN GENERAL

MATINV 8
MATINV 9
MATINVI0
MATINVl 1
MATINVI2
MATINVI3
MATINVI4
MATINVI5
MATINVI6
MATINVI7
MATINVI8
MATINVI9
MATINV20
MATINV21
MATINV22
MATINV23
MATINV24
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MATINV26
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MATINV31
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MATINV36
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MATINV41
MATINV42
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MATINV44
MATINV45
MATINV46
MATINV47
MATINV48
MATINV49
MATINV50
MATINV51
MATINV52
MATINV53
MATINV54
MATINV55
MATINV56
MATINV57
MATINV58
MATINV59
MATINV60
MATINV61
MATINV62
MATINV63
MATINV64
MATINV65
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-C THE USER DOES NOT NEED TO MAKE USE MATINV68
C OF THIS ARRAY. MATINV69
C MATINV70

--C IWK - A TWO-DIMENSIONALINTEGER ARRAY OF MATINV71
C TEMPORARYSTORAGEUSED BY THE ROUTINE. MATINV72
C IWK SHOULDHAVE ITS FIRST DIMENSION MATINV73
C MAX, AND ITS SECOND2. MATINV74
C MATINV75
C REQUIREDROUTINES- MATINV76
C MATINV77

--C REFERENCE -FOX,L, AN INTRODUCTIONTO NUMERICAL MATINV78
C LINEAR ALGEBRA MATINV79
C MATINV80

_C STORAGE - 542 OCTAL LOCATIONS MATINV81
C MATINV82
C LANGUAGE - FORTRAN MATI NV83
C LIBRARY FUNCTIONS -ABS MATINV84

--C MATINV85

C RELEASED - JULY 1973 MATINV86

C MATINV87

--C LATEST REVISION - JULY 29, 1981 MATINV88

C COMPUTER SCIECES CORPORATION MATINV89

C HAMPTON, VA MATINV90

C

--C

C

C

2O

C

C

--C

6O

8O

85

i00

105

106

-- ii0

C

C

DIMENSION IPIVOT (N) ,A(MAX,N) ,B (MAX,N) ,IWK(MAX, 2)

EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM), (AMAX, T, SWAP)

INITIALIZATION

ISCALE=0

Rl=(10.0d+00)**32

R2=I.0d+00/RI
DETERM=I.0d+00

DO 20 J=I,N

IPIVOT (J) =0

CONTINUE

DO 550 I=I,N

SEARCH FOR PIVOT ELEMENT

AMAX=0.0d+00

DO 105 J=I,N

IF (IPIVOT(J)-I) 60, 105, 60

DO I00 K=I,N

IF (IPIVOT(K)-I) 80, I00, 740

TMAX = ABS(A(J,E))

IF(AMAX-TMAX) 85,100,i00

IROW=J

I COLUM=K

AMAX=TMAX

CONTINUE

CONTINUE

IF (AMAX) 740,106,110

DETERM=0.0d+00

ISCALE=0

GO TO 740

IPIVOT(ICOLUM) = 1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

MATINV92

MAT INV93

MATINV94

MATINV98

MATINV99

MATIN100

MATIN101

MATIN102

MATIN103

MATIN104

MATIN105

MATIN106

MATIN107

MATIN108

MATIN109

MATIN110

MATIN111

MATIN112

MATIN113

MATIN114

MATIN115

MATIN116

MATIN117

MATIN118

MATIN119

MATIN120

MATIN121

MATIN122

MATIN123

MATIN124

MATIN125

MATIN126

MATIN127

MATIN128

MATIN129

MATIN130



-C

C
C

--C

C
_C

C

C
C

140

2OO

210

25O
260

i000

i010

1020

1030
1040

1050

1060
1070

1080

1090
2000

2010

320

321

350

360
370

IF (IROW-ICOLUM) 140, 260,
DETEPM=-DETERM
DO 200 L=I,N

SWAP=A(IROW,L)
A ( IROW,L) =A (ICOLUM,L)
A ( ICOLUM,L) =SWAP

CONTINUE

IF(M) 260, 260, 210

DO 250 L=I, M

SWAP=B (IROW, L)

B (IROW, L) =B (ICOLUM, L)

B (ICOLUM, L) =SWAP

CONTINUE

IWK (I, i)=IROW

IWK (I, 2 )=ICOLUM

PIVOT=A (ICOLUM, ICOLUM)

IF (IOP) 740,1000,321

140

SCALE THE DETERMINANT

PIVOTI=PIVOT

IF(ABS(DETERM)-RI)I030,1010,1010

DETERM=DETERM/RI

ISCALE=ISCALE+I

IF(ABS(DETERM)-RI)I060,1020,1020

DETERM=DETERM/RI

ISCALE=ISCALE+I

GO TO 1060

IF(ABS(DETERM)-R2)I040,1040,1060
DETERM=DETERM*RI

ISCALE=ISCALE-I

IF(ABS(DETERM)-R2)I050,1050,1060
DETERM=DETERM*RI

ISCALE=ISCALE-I

IF(ABS(PIVOTI)-RI)I090,1070,1070

PIVOTI=PIVOTI/RI

ISCALE=ISCALE+I

IF(ABS(PIVOTI)-RI)320,1080,1080

PIVOTI=PIVOTI/RI

ISCALE=ISCALE+I

GO TO 320

IF(ABS(PIVOTI)-R2)2000,2000,320
PIVOTI=PIVOTI*RI

ISCALE=ISCALE-I

IF(ABS(PIVOTI)-R2)2010,2010,320

PIVOTI=PIVOTI*RI

ISCALE=ISCALE-I

DETERM=DETERM*PIVOTI

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOLUM, ICOLUM)=I.0d+00

DO 350 L=I,N

A (ICOLUM, L) =A (ICOLUM, L) / PIVOT

IF(M) 380, 380, 360

DO 370 L=I,M

B (ICOLUM, L) =B (ICOLUM, L)/PIVOT

REDUCE NON-PIVOT ROWS

MATIN131

MATIN132

MATIN133

MATIN134

MATIN135

MATIN136

MATIN137

MATIN138

MATIN139

MATIN140

MATIN141

MATIN142

MATIN143

MATIN144

MATIN145

MATIN146

MATIN147

MATIN148

MATIN149

MATIN150

MATIN151

MATIN152

MATIN153

MATIN154

MATIN155

MATIN156

MATIN157

MATIN158

MATIN159

MATIN160

MATIN161

MATIN162

MATIN163

MATIN164

MATIN165

MATIN166

MATIN167

MATIN168

MATIN169

MATIN170

MATIN171

MATIN172

MATIN173

MATIN174

MATIN175

MATIN176

MATIN177

MATIN178

MATIN179

MATIN180

MATIN181

MATIN182

MATIN183

MATIN184

MATIN185

MATIN186

MATIN187

MATIN188

MATIN189

MATIN190



C

w

C

C

--C

--C

C

C

380 DO 550 LI=I,N

IF(LI-ICOLUM) 400, 550, 400

400 T=A(LI,ICOLUM)

A(LI,ICOLUM)=O.0d+00

DO 450 L=I,N

450 A(LI, L) =A(LI, L) -A(ICOLUM, L) *T

IF(M) 550, 550, 460

460 DO 500 L=I,M

500 B (LI,L) =B (LI, L) -B (ICOLUM, L) *T

550 CONTINUE

INTERCHANGE COLUMNS

630

705

710 CONTINUE

740 RETURN

END

ROUTINE NAME

FROM EISPACK

DO 710 I=I,N

L=N+I-I

IF (IWK (L, i) -IWK (L, 2) ) 630,710,630

JROW=IWK(L,I)

JCOLUM=IWK(L,2)

DO 705 K=I,N

SWAP=A(K,JROW)

A (K, JROW) =A (K, JCOLUM)

A(K,JCOLUM)=SWAP
CONTINUE

- HC318=EPSLON

C

C

C

C

C

C

--C

C

C

LATEST REVISION

PURPOSE

USAGE

- AUGUST 1,1984

COMPUTER SCIENCES CORP., HAMPTON, VA.

- THE FORTRAN FUNCTION EPSLON ESTIMATES UNIT

ROUNDOFF IN QUANTITIES OF SIZE X.

- VARIABLE = EPSLON(X)

MATIN191

MATIN192

MATIN193

MATIN194

MATIN195

MATIN196

MATIN197

MATIN198

MATIN199

MATIN200

MATIN201

MATIN202

MATIN203

MATIN204

MATIN205

MATIN206

MATIN207

MATIN208

MATIN209

MATIN210

MATIN211

MATIN212

MATIN213

MATIN214

MATIN215

MATIN216

MATIN217

EPSLON 2

EPSLON 3

EPSLON 4

EPSLON 5

EPSLON 6

EPSLON 7

EPSLON 8

EPSLON 9

EPSLONI0

EPSLONII

EPSLONI2

EPSLONI3

EPSLONI4

--C

C

C

C

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

ARGUMENTS X

REQUIRED ROUTINES

REMARKS I.

- IS A REAL INPUT VARIABLE WHICH REPRESENTS THE EPSLONI5

QUANTITIES OF SIZE IN WHICH UNIT ROUNDOFF

WILL BE ESTIMATED.

- NONE

IT SHOULD BE NOTED THAT EPSLON IS A FUNCTION

DESIGNED TO BE CALLED BY ROUTINES IN THE

EISPACK VERSION 3.

THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL

SYSTEMS SATISFYING THE FOLLOWING TWO

ASSUMPTIONS,

A. THE BASE USED IN REPRESENTING FLOATING

POINT NUMBERS IS NOT A POWER OF THREE.

B. THE QUANTITY A IN STATEMENT i0 IS

REPRESENTED TO THE ACCURACY USED IN FLOATING

POINT VARIABLES THAT ARE STORED IN MEMORY.

EPSLONI6

EPSLONI7

EPSLONI8

EPSLONI9

EPSLON20

EPSLON21

EPSLON22

EPSLON23

EPSLON24

EPSLON25

EPSLON26

EPSLON27

EPSLON28

EPSLON29

EPSLON30

EPSLON31

EPSLON32

EPSLON33

EPSLON34



--C
C
C

--C
C
C
C
C
C
C

--C
C
C

_C
C
C
C

--C
C
C

--C
C
C

ClO0
C
C
C

--CA =

C

THE STATEMENT NUMBER i0 AND THE GO TO i0 ARE

INTENDED TO FORCE OPTIMIZING COMPILERS TO

GENERATE CODE SATISFYING ASSUMPTION 2.

UNDER THESE ASSUMPTIONS,

THAT,

IT SHOULD BE TRUE

A IS NOT EXACTLY EQUAL TO FOUR-THIRDS,

B HAS A ZERO FOR ITS LAST BIT OR DIGIT,

C IS NOT EXACTLY EQUAL TO ONE,

EPS MEASURES THE SEPARATION OF 1.0 FROM THE

NEXT LARGER FLOATING POINT NUMBER.

EXAMPLE :

PROGRAM TR(OUTPUT,TAPE6=OUTPUT)

REAL X

X = 4.

A = EPSLON(X)

WRITE (6, i00) A

FORMAT(5HOA = ,G22.14)

STOP

END

OUTPUT :

.56843418860808E-13

C ........................... mm_m .... mm_

--C*F45VlP0*

REAL*8 FUNCTION EPSLON (X)
C

C**

w

C

C

C

C

C

_C

C

C

C PURPOSE

--C

C

C

--C

C

C

REAL*8 X

REAL*8 A,B,C,EPS

A = 4.0E0/3.0E0
I0 B = A - 1.0E0

C = B + B + B

EPS = ABS(C-I.0E0)

IF (EPS .EQ. 0.0E0) GO TO i0

EPSLON = EPS*ABS(X)

RETURN

THIS PROGRAM VALID ON FTN4 AND FTN5 **

END

ROUTINE NAME - PF260=QZHES

FROM EISPACK

LATEST REVISION - AUGUST 1,1984

COMPUTER SCIENCES CORP., HAMPTON, VA.

- THIS SUBROUTINE ACCEPTS A PAIR OF REAL

GENERAL MATRICES AND REDUCES ONE OF THEM TO

UPPER HESSENBERG FORM AND THE OTHER TO UPPER

TRIANGULAR FORM USING ORTHOGONAL

TRANSFORMATIONS. IT IS USUALLY FOLLOWED BY

QZIT(PF261), QZVAL(PF262) AND, POSSIBLY,

QZVEC (PF263) .

EPSLON35

EPSLON36

EPSLON37

EPSLON38

EPSLON39

EPSLON40

EPSLON41

EPSLON42

EPSLON43

EPSLON44

EPSLON45

EPSLON46

EPSLON47

EPSLON48

EPSLON49

EPSLON50

EPSLON51

EPSLON52

EPSLON53

EPSLON54

EPSLON55

EPSLON56

EPSLON57

EPSLON58

EPSLON59

EPSLON60

EPSLON61

EPSLON62

EPSLON63

EPSLON64

EPSLON65

EISPAK

EISPAK32

EISPAK

EISPAK

EISPAK35

EISPAK36

EISPAK37

EISPAK38

EISPAK39

EISPAK40

EISPAK41

EISPAK42

EISPAK43

QZHES 2

QZHES 3

QZHES 4

QZHES 5

QZHES 6

QZHES 7

QZHES 8

QZHES 9

QZHES i0

QZHES ii

QZHES 12

QZHES 13

QZHES 14

QZHES 15

QZHES 16

QZHES 17



C
C
C

-C
C
C

_C
C
C
C

--C
C

C
C

C

C

C

--C

C

C

C

C

--C

C

C

--C

C

-C

C

C

-C

C

-C

C

C

C

USAGE

ARGUMENTS NM

N

A

B

MATZ

Z

- CALL QZHES(NM,N,A,B,MATZ,Z)

- ON INPUT NM MUST BE SET TO THE ROW DIMENSION

OF TWO-DIMENSIONAL ARRAY PARAMETERS AS

DECLARED IN THE CALLING PROGRAM DIMENSION

STATEMENT.

- ON INPUT N IS THE ORDER OF THE MATRICES.

- ON INPUT A CONTAINS A REAL GENERAL MATRIX.

MUST BE OF DIMENSION NM X N.

QZHES 18

QZHES 19

QZHES 20

QZHES 21

QZHES 22

QZHES 23

QZHES 24

QZHES 25

QZHES 26

QZHES 27

QZHES 28

QZHES 29

QZHES 30

QZHES 31

ON OUTPUT A HAS BEEN REDUCED TO UPPER QZHES 32

HESSENBERG FORM. THE ELEMENTS BELOW THE FIRSTQZHES 33

SUBDIAGONAL HAVE BEEN SET TO ZERO. QZHES 34

QZHES 35

- ON INPUT B CONTAINS A REAL GENERAL MATRIX. QZHES 36

MUST BE OF DIMENSION NM X N. QZHES 37

QZHES 38

ON OUTPUT B HAS BEEN REDUCED TO UPPER QZHES 39

TRIANGULAR FORM. THE ELEMENTS BELOW THE MAIN QZHES 40

DIAGONAL HAVE BEEN SET TO ZERO. QZHES 41

QZHES 42

- ON INPUT MATZ SHOULD BE SET TO .TRUE. IF THE QZHES 43

RIGHT HAND TRANSFORMATIONS ARE TO BE QZHES 44

ACCUMULATED FOR LATER USE IN COMPUTING QZHES 45

EIGENVECTORS, AND TO .FALSE. OTHERWISE. QZHES 46

QZHES 47

- ON OUTPUT Z CONTAINS THE PRODUCT OF THE RIGHT QZHES 48

HAND TRANSFORMATIONS IF MATZ HAS BEEN SET TO QZHES 49

.TRUE. OTHERWISE, Z IS NOT REFERENCED.

MUST BE OF DIMENSION NM X N.

REQUIRED ROUTINES - NONE

REMARKS 1. THIS SUBROUTINE IS THE FIRST STEP OF THE QZ

ALGORITHM FOR SOLVING GENERALIZED MATRIX

EIGENVALUE PROBLEMS, SIAM J. NUMER. ANAL. i0,

241-256(1973) BY MOLER AND STEWART.

EXAMPLE :

PROGRAM TQZHES(OUTPUT,TAPE6=OUTPUT)

DIMENSION A(5,5),Z(5,5),B(5,5)

LOGICAL MATZ

N = 5

NM= 5

MATZ = .TRUE.

DATA A /10.,2.,3.,2"1.,2.,12.,1.,2.,1.,3.,1.,11.,

* 1.,-1.,1.,2.,1.,9.,3"1.,-1.,1.,15. /

/
DATA B /12.,1.,-1.,2.,2"1.,14.,1.,-1.,1.,-1.,1.,

* 16.,-i.,i.,2.,-i.,-I.,12.,-i.,3"1.,-I.,ii.

CALL QZHES (NM, N, A, B, MATZ, Z)

WRITE(6,100) ((A(I,J),I=I,5),J=I,5), ((B(I,J),I=I,5),J=I,5),

QZHES 50

QZHES 51

QZHES 52

QZHES 53

QZHES 54

QZHES 55

QZHES 56

QZHES 57

QZHES 58

QZHES 59

QZHES 60

QZHES 61

QZHES 62

QZHES 63

QZHES 64

QZHES 65

QZHES 66

QZHES 67

QZHES 68

QZHES 69

QZHES 70

QZHES 71

QZHES 72

QZHES 73

QZHES 74

QZHES 75

QZHES 76

QZHES 77



C
CI00
C

-C

C

C

_C

C

C

C A =

--C -9.9

C -2.4

.91

--C -3.8

C 2.7

C B =

C -12.

C 2.3

C -.34

C -3.8

--C 2.5

C Z =

C 1.0

_C O.

C O.

C O.

C O.

C

------------------

* ((Z(I,J) ,I=l,5),J--1,5)

FORMAT(IH ,5H A = /5(IH ,5(G8.2,2X)/))

* 5H B = /5(IH ,5(G8.2,2X)/)

* 5H Z = /5(IH ,5(G8.2,2X)/))
STOP

END

OUTPUT :

4.1 0. 0.

ii. -3.0 0.

.26 -13. 3.3

2.0 1.7 -ii.

-1.5 -.99 1.4

0. 0. 0.

16. 0. 0.

-3.0 -12. 0.

.80 -1.5 -i0.

-1.4 -1.5 -1.5

0. 0. O.

.26 .95 -.14

.87E-01 -. 24E-01 .43

.24E-01 .16 .89

-.96 .26 .22E-01

.

0.

0.

2.6

-II.

0.

0.

0.

0.

-13.

0.

-. 70E-01

-.90

.43

-. 89E-01

QZHES 78

QZHES 79

QZHES 80

QZHES 81

QZHES 82

QZHES 83

QZHES 84

QZHES 85

QZHES 86

QZHES 87

QZHES 88

QZHES 89

QZHES 90

QZHES 91

QZHES 92

QZHES 93

QZHES 94

QZHES 95

QZHES 96

QZHES 97

QZHES 98

QZHES 99

QZHESI00

QZHESI01

QZHESI02

QZHESI03

QZHESI04

QZHESI05

QZHESI06

-C

--C

C

C

C

--C

SUBROUTINE QZHES(NM,N,A,B,MATZ,Z)

implicit real*8 (a-h,o-z)

INTEGER I,J,K,L,N,LB,LI,NM,NKI,NMI,NM2

REAL*8 A(NM,N),B(NM,N),Z(NM,N)

REAL*8 R,S,T,UI,U2,VI,V2,RHO
LOGICAL MATZ

IF (.NOT. MATZ) GO TO I0

DO 3 J = i, N

DO 2 I = i, N

Z(I,J) = 0.0E0

CONTINUE

Z(J,J) = 1.0E0
3 CONTINUE

.......... REDUCE B TO UPPER TRIANGULAR FORM ..........

i0 IF (N .LE. i) GO TO 170
NMI=N- 1

DO I00 L = i, NMI
L1 = L + 1

S = O.0E0

2O

DO 20 I = LI, N

S = S + ABS(B(I,L))

CONTINUE

IF (S .EQ. O.0E0) GO TO i00

S = S + ABS(B(L,L))

EISP6685

EISP6686

EISP6687

EISP66

EISP66

EISP6690

EISP6691

EISP6692

EISP6693

EISP6694

EISP6695

EISP6696

EISP6697

EISP6698

EISP6699

EISP6700

EISP6701

EISP6702

EISP6703

EISP6704

EISP6705

EISP6706

EISP6707

EISP6708

EISP6709

EISP6710

EISP6711

EISP6712

EISP6713

EISP6714



w

C

_C

--C

--C

C

C

_C

C

C

C

C

C

--C

C

C

C

C

C

C

C

R = 0.0E0

25

DO 25 I = L, N

B(I,L) = B(I,L) / S

R = R + B(I,L)**2
CONTINUE

R = SIGN(SQRT(R) ,B(L,L))

B(L,L) = B(L,L) + R

RHO = R * B(L,L)

DO 50 J = LI, N
T = 0.0E0

3O

DO 30 I = L, N

T = T + B(I,L) * B(I,J)

CONTINUE

T = -T / RHO

4O

DO 40 I = L, N

B(I,J) = B(I,J) + T * B(I,L)

CONTINUE

50 CONTINUE

DO 80 J = I, N

T = 0.0E0

60

DO 60 I = L, N

T = T + B(I,L) * A(I,J)

CONTINUE

T = -T / RHO

7O

DO 70 I = L, N

A(I,J) = A(I,J) + T * B(I,L)

CONTINUE

80 CONTINUE

B(L,L) = -S * R

90

DO 90 I = LI, N

B(I,L) = 0.0E0

CONTINUE

i00 CONTINUE

.......... REDUCE A TO UPPER HESSENBERG FORM, WHILE

KEEPING B TRIANGULAR ..........

IF (N .EQ. 2) GO TO 170

NM2 = N - 2

DO 160 K = i, NM2

NKI = NMI - K

.......... FOR L=N-I STEP -i UNTIL K+I DO -- . .........

DO 150 LB = i, NKI

L = N - LB

L1 = L + 1

.......... ZERO A(L+I,K) ..........
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EISP6727
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EISP6732
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EISP6734

EISP6735
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EISP6737
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EISP6744

EISP6745

EISP6746

EISP6747

EISP6748

EISP6749

EISP6750

EISP6751

EISP6752

EISP6753

EISP6754

EISP6755

EISP6756

EISP6757

EISP6758

EISP6759

EISP6760

EISP6761

EISP6762

EISP6763

EISP6764
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EISP6770

EISP6771

EISP6772

EISP6773

EISP6774



C

C

C

C

S = ABS(A(L,K)) + ABS(A(LI,K))
IF (S .EQ. 0.0E0) GO TO 150
Ul = A(L,K) / S

U2 = A(LI,K) / S

R = SIGN(SQRT(UI*UI+U2*U2) ,UI)

V1 = -(UI + R) / R

V2 = -U2 / R

u2 = v2 / vl

ii0

DO ii0 J = K, N

T = A(L,J) + U2 * A(LI,J)

A(L,J) = A(L,J) + T * V1

A(LI,J) = A(LI,J) + T * V2

CONTINUE

A(LI,K) = 0.0E0

C

--C

C

120

DO 120 J = L, N

T = B(L,J) + U2 * B(LI,J)

B(L,J) = B(L,J) + T * V1

B(LI,J) = B(LI,J) + T * V2

CONTINUE

ZERO B (L+I, L)...... ÷
IF (S .EQ. 0.0E0) GO TO 150

U1 -- B(LI,LI) / S

U2 = B(LI,L) / S

R = SIGN(SQRT(UI*UI+U2*U2) ,UI)

V1 = -(UI + R) / R

v2 =-u2 / R
U2 = V2 / Vl

130

DO 130 I = i, LI
T = B(I,LI) + U2 * B(I,L)

B(I,LI) = B(I,LI) + T * Vl

B(I,L) = B(I,L) + T * V2

CONTINUE

B(LI,L) = 0.0E0

C

--C

140

DO 140 I = i, N

T = A(I,LI) + U2 * A(I,L)

A(I,LI) = A(I,LI) + T * Vl

A(I,L) = A(I,L) + T * V2

CONTINUE

IF (.NOT. MATZ) GO TO 150

C

C

--C

145

DO 145 I = I, N
T = Z(I,LI) + U2 * Z(I,L)

Z(I,LI) = Z(I,LI) + T * V1

Z(I,L) = Z(I,L) + T * V2

CONTINUE

150 CONTINUE

160 CONTINUE

170 RETURN
C** THIS PROGRAM VALID ON FTN4 AND FTN5 **
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END
C ROUTINE NAME
C FROM EISPACK

C

------------------------------------------,

C

_C LATEST REVISION

C

C

C

-C PURPOSE

C

C

--C

C

C

C

-C

C

C

--C

C

C

_C

C

C

C

--C

C

C

--C

C

C

_C

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

USAGE

ARGUMENTS NM

N

A

B

EPSI

- PF261=QZIT

EISP6835

QZIT 2

QZIT 3

QZlT 4

QZIT 5

- AUGUST 1,1984

COMPUTER SCIENCES CORP., HAMPTON, VA.

- THIS SUBROUTINE ACCEPTS A PAIR OF REAL

MATRICES, ONE OF THEM IN UPPER HESSENBERG

FORM AND THE OTHER IN UPPER TRIANGULAR FORM.

IT REDUCES THE HESSENBERG MATRIX TO

QUASI-TRIANGULAR FORM USING ORTHOGONAL

TRANSFORMATIONS WHILE MAINTAINING THE

TRIANGULAR FORM OF THE OTHER MATRIX. IT IS

USUALLY PRECEDED QZHES(PF260) AND FOLLOWED

BY QZVAL(PF262) AND, POSSIBLY, QZVEC(PF263).

- CALL QZIT(NM,N,A,B,EPSI,MATZ,Z,IERR)

- ON INPUT NM MUST BE SET TO THE ROW DIMENSION

OF TWO-DIMENSIONAL ARRAY PARAMETERS AS

DECLARED IN THE CALLING PROGRAM DIMENSION

STATEMENT.

- ON INPUT N IS THE ORDER OF THE MATRICES.

- ON INPUT A CONTAINS A REAL UPPER HESSENBERG

MATRIX.

MUST BE OF DIMENSION NM X N.

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

ON OUTPUT A HAS BEEN REDUCED TO QZIT

QUASI-TRIANGULAR FORM. THE ELEMENTS BELOW THEQZIT

FIRST SUBDIAGONAL ARE STILL ZERO AND NO TWO QZIT

CONSECUTIVE SUBDIAGONAL ELEMENTS ARE NONZERO. QZIT

QZIT

QZIT

- ON INPUT B CONTAINS A REAL UPPER TRIANGULAR QZIT

MATRIX. QZIT

MUST BE OF DIMENSION NM X N. QZIT

QZIT

ON OUTPUT B IS STILL IN UPPER TRIANGULAR QZIT

FORM, ALTHOUGH ITS ELEMENTS HAVE BEEN ALTERED.QZIT

THE LOCATION B(N,I) IS USED TO STORE EPSl QZIT

TIMES THE NORM OF B FOR LATER USE BY QZVAL QZIT

QZVAL(PF262) AND QZVEC(PF263). QZIT

QZIT

- ON INPUT EPSI IS A TOLERANCE USED TO DETERMINEQZIT

NEGLIGIBLE ELEMENTS. EPSI = 0.0 (OR NEGATIVE)QZIT

MAY BE INPUT, IN WHICH CASE AN ELEMENT WILL BEQZIT

NEGLECTED ONLY IF IT IS LESS THAN ROUNDOFF QZIT

ERROR TIMES THE NORM OF ITS MATRIX. IF THE QZIT

INPUT EPSI IS POSITIVE, THEN AN ELEMENT WILL QZIT

BE CONSIDERED NEGLIGIBLE IF IT IS LESS THAN QZIT

EPSI TIMES THE NORM OF ITS MATRIX. A POSITIVEQZIT

VALUE OF EPSI MAY RESULT IN FASTER EXECUTION, QZIT

BUT LESS ACCURATE RESULTS. QZIT

6

7

8

9

I0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

6O



C
C
C

-C
C
C

_C
C
C
C

--C
C
C

--C
C
'C
C
C
C
C

--C

C

C

_C

C

C

C

C

C

C

--C

C

C

_C

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

--C

C99

C

C

CI00

C

C

-C

C

C

MATZ

IERR

REQUIRED ROUTINES

REMARKS i.

QZIT

- ON INPUT MATZ SHOULD BE SET TO .TRUE. IF THE QZIT

RIGHT HAND TRANSFORMATIONS ARE TO BE QZIT

ACCUMULATED FOR LATER USE IN COMPUTING QZIT

EIGENVECTORS, AND TO .FALSE. OTHERWISE. QZIT
QZIT

- ON INPUT Z CONTAINS, IF MATZ HAS BEEN SET TO QZIT

.TRUE., THE TRANSFORMATION MATRIX PRODUCED IN QZIT

THE REDUCTION BY QZHES(PF260), IF PERFORMED, QZIT

OR ELSE THE IDENTITY MATRIX. IF MATZ HAS BEENQZIT

SET TO .FALSE., Z IS NOT REFERENCED. QZIT

MUST BE OF DIMENSION NM X N. QZIT

QZIT

ON OUTPUT Z CONTAINS THE PRODUCT OF THE QZIT

RIGHT HAND TRANSFORMATIONS (FOR BOTH STEPS) IFQZIT

MATZ HAS BEEN SET TO .TRUE.. QZIT

QZIT

- ON OUTPUT IERR IS SET TO QZIT

ZERO FOR NORMAL RETURN. QZIT

J IF THE LIMIT OF 30*N ITERATIONS IS EXHAUSTED QZIT

WHILE THE J-TH EIGENVALUE IS BEING SOUGHT. QZIT

- HC318=EPSLON

THIS SUBROUTINE IS THE SECOND STEP OF THE QZ

ALGORITHM FOR SOLVING GENERALIZED MATRIX

EIGENVALUE PROBLEMS, SIAM J. NUMER. ANAL. i0,

241-256(1973) BY MOLER AND STEWART, AS

MODIFIED IN TECHNICAL NOTE NASA TN

D-7305(1973) BY WARD.

EXAMPLE :

PROGRAM TQZIT(OUTPUT,TAPE6=OUTPUT)

DIMENSION A(5,5),B(5,5),Z(5,5)
LOGICAL MATZ

N = 5

NM = 5

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

QZIT

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

8O

81

82

83

84

85

86

87

88

89

9O

91

92

93

94

95

96

97

98

99

MATZ = .TRUE.

EPSI = 0.0E0

DATA A /10.,2.,3.,2"1.,2.,12.,1.,2.,1.,3.,1.,11.,

* 1.,-1.,1.,2.,1.,9.,3"1.,-1.,1.,15. /

DATA B /12.,1.,-1.,2.,2"1.,14.,1.,-1.,1.,-1.,1.,

* 16.,-i.,i.,2.,-i.,-i.,12.,-I.,3"1.,-i.,ii-

CALL QZHES(NM,N,A,B,MATZ,Z)

CALL QZIT(NM,N,A,B,EPSI,MATZ,Z,IERR)

WRITE(6,99) IERR

FORMAT(IHI,8H IERR = ,I4)

WRITE(6,100) ((A(I,J),I=I,5) ,J=l,5), ((B(I,J),I=I,5) ,J=l,5) ,

* ( (Z (I,J) ,I=l, 5) ,J=l, 5)

FORMAT(IH ,5H A = /5(IH ,5(G8.2,2X)/))

* 5H B = /5(IH ,5(S8.2,2X)/)

* 5H Z = /5(IH ,5(S8.2,2X)/))

STOP

END

QZIT i00

QZIT I01

QZIT 102

QZIT 103

QZIT 104

QZIT 105

QZIT 106

QZIT 107

QZIT 108

QZIT 109

QZIT Ii0

QZIT Iii

QZIT 112

QZIT 113

QZIT 114

QZIT 115

QZIT 116

QZIT 117

QZIT 118

QZIT 119

QZIT 120



C OUTPUT :
C
C IERR = 0

-C A =
C -15. -I. 3 0. 0.
C I.i 7.4 0. 0.

C I. 5 -I. 5 -16. 0.
C -2.2 .96 1.0 -I0.
,C -2.6 -.31 1.2 1.7
C B =

--C -9.9 0. 0. 0.
C -.29 17. 0. 0.
C i. 3 -2.1 -14. 0.
C -I. 9 I. 7 .96 -ii.
C -2.6 -.32 1.3 2.1
_ S

C .28 -.71E-01 .16 -.24

C .52 -.24 -.66 .48

C .49 .56 .49 .45

C -.60 .48 -.29 .44

--C -.25 -.63 .45 .57

C

O,

0.

0.

0.

-8.6

.31E-12

0.

0.

0.

-13.

-.91

-.64E-01

.75E-01

-.38

-.94E-01

QZIT 121

QZIT 122

QZIT 123

QZIT 124

QZIT 125

QZIT 126

QZIT 127

QZIT 128

QZIT 129

QZIT 130

QZIT 131

QZIT 132

QZIT 133

QZIT 134

QZIT 135

QZIT 136

QZIT 137

QZIT 138

QZIT 139

QZIT 140

QZIT 141

QZIT 142

QZIT 143

C

C

-C

C

-C

g

C

C

SUBROUTINE QZIT(NM,N,A,B,EPSI,MATZ,Z,IERR)

implicit real*8 (a-h,o-z)

INTEGER I,J,K,L,N,EN,KI,K2,LD,LL,LI,NA,NM,ISH,ITN,ITS,KMI,LMI,

X ENM2,IERR,LORI,ENORN

REAL*8 A(NM,N),B(NM,N) ,Z(NM,N)

REAL*8 R,S,T,AI,A2,A3,EP,SH,UI,U2,U3,Vl,V2,V3,ANI,AII,

X AI2,A21,A22,A33,A34,A43,A44,BNI,BII,BI2,B22,B33,B34,

X B44,EPSA,EPSB,EPSI,ANORM,BNORM,EPSLON

LOGICAL MATZ,NOTLAS

IERR = 0

.......... COMPUTE EPSA,EPSB ..........

ANORM = 0.0E0

BNORM = 0.0E0

DO 30 I = i, N

ANI = 0.0E0

IF (I .NE. I) ANI = ABS(A(I,I-I))

BNI = 0.0E0

2O

DO 20 J = I, N

ANI = ANI + ABS(A(I,J))

BNI = BNI + ABS(B(I,J))

CONTINUE

IF (ANI .GT. ANORM) ANORM = ANI

IF (BNI .GT. BNORM) BNORM = BNI

30 CONTINUE

IF (ANORM .EQ. 0.0E0) ANORM = 1.0E0

IF (BNORM .EQ. O.0EO) BNORM = 1.0E0
EP = EPSI

IF (EP .ST. 0.OE0) GO TO 50
.......... USE ROUNDOFF LEVEL IF EPSI IS ZERO ..........

EP = EPSLON(I. 0E0)

50 EPSA = EP * ANORM

EPSB = EP * BNORM
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C .......... REDUCEA TO QUASI-TRIANGULAR FORM, WHILE
C KEEPING B TRIANGULAR ..........

LORI = 1
-- ENORN= N

EN = N
ITN = 30*N

BEGIN QZ STEP___ ...oooo.,e eoooooeeee

6O IF (EN .LE. 2) GO TO 1001
IF (.NOT. MATZ) ENO_ = EN
ITS = 0

NA = EN - 1

ENM2 = NA - 1

70 ISH = 2

-C .......... CHECK FOR CONVERGENCE OR REDUCIBILITY.

C FOR L=EN STEP -i UNTIL 1 DO -- . .........

DO 80 LL = i, EN

LMI = EN - LL

L= LMI+I

IF (L .EQ. i) GO TO 95

IF (ABS(A(L,LMI)) .LE. EPSA) GO TO 90
80 CONTINUEu

C

90 A(L,LMI) = 0.0E0

-- IF (L .LT. NA) GO TO 95
C .......... I-BY-1 OR 2-BY-2 BLOCK ISOLATED ..........

EN = LMI

GO TO 60

C .......... CHECK FOR SMALL TOP OF B ..........

95 LD = L

I00 L1 = L + 1

-- BII = B(L,L)

IF (ABS(BII) .GT. EPSB) GO TO 120

B(L,L) = 0.0E0

_ S = ABS(A(L,L)) + ABS(A(LI,L))

U1 = A(L,L) / S

U2 = A(LI,L) / S

R = SIGN(SQRT(UI*UI+U2*U2),UI)

-- Vl = -(UI + R) / R

v2 = -u2 / R
U2 = V2 / Vl

-C

C

--C

DO Ii0 J = L, ENORN

T = A(L,J) + U2 * A(LI,J)

A(L,J) = A(L,J) + T * Vl

A(LI,J) = A(LI,J) + T * V2

T = B(L,J) + U2 * B(LI,J)

B(L,J) = B(L,J) + T * Vl

B(LI,J) = B(LI,J) + T * V2

ii0 CONTINUE

IF (L .NE. i) A(L,LMI) = -A(L,LMI)

LMI= L

L = L1

GO TO 90

120 All = A(L,L) / BII

A21 = A(LI,L) / BII

IF (ISH .EQ. i) GO TO 140
.......... ITERATION STRATEGY ..........

IF (ITN .EQ. 0) GO TO i000

IF (ITS .EQ. i0) GO TO 155
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C .......... DETERMINE TYPE OF SHIFT ..........

B22 = B(LI,LI)

IF (ABS(B22) .LT. EPSB) B22 = EPSB

-- B33 = B(NA,NA)

IF (ABS(B33) .LT. EPSB) B33 = EPSB

B44 = B(EN,EN)

_ IF (ABS(B44) .LT. EPSB) B44 = EPSB

A33 = A(NA,NA) / B33

A34 = A(NA,EN) / B44

A43 = A(EN,NA) / B33

- A44 = A(EN,EN) / B44

B34 = B(NA,EN) / B44

T = 0.5E0 * (A43 * B34 - A33 - A44)

-- R = T * T + A34 * A43 - A33 * A44

IF (R .LT. 0.0E0) GO TO 150

C .......... DETERMINE SINGLE SHIFT ZEROTH COLUMN OF A ..........

ISH = 1

R = SQRT (R)

SH = -T + R

S = -T - R

-- IF (ABS(S-A44) .LT. ABS(SH-A44)) SH = S
C .......... LOOK FOR TWO CONSECUTIVE SMALL

C SUB-DIAGONAL ELEMENTS OF A.

__ FOR L=EN-2 STEP -i UNTIL LD DO -- ..........

DO 130 LL = LD, ENM2
L = ENM2 + LD - LL

IF (L .EQ. LD) GO TO 140
LMI=L- 1

L1 = L + 1

T = A(L,L)

-- IF (ABS (B (L, L) ) .ST. EPSB) T = T - SH * B(L,L)

IF (ABS(A(L,LMI)) .LE. ABS(T/A(LI,L)) * EPSA) GO TO I00
130 CONTINUE

_C

140 A1 = All - SH

A2 = A21

IF (L .NE. LD) A(L,LMI) =-A(L,LMI)
-- GO TO 160

C .......... DETERMINE DOUBLE SHIFT ZEROTH COLUMN OF A ..........

150 AI2 = A(L, LI) / B22

-- A22 = A(LI,LI) / B22

BI2 = B(L,LI) / B22

A1 = ((A33 - All) * (A44 - All) - A34 * A43 + A43 * B34 * All)

_ X / A21 + AI2 - All * BI2

A2 = (A22 - All) - A21 * BI2 - (A33 - All) - (A44 - All)

X + A43 * B34

A3 = A(LI+I,LI) / B22

-- GO TO 160

C .......... AD HOC SHIFT ..........

155 A1 = 0.0E0

-- A2 = 1.0E0

A3 = 1.1605E0

160 ITS = ITS + 1

ITN = ITN - 1

IF (.NOT. MATZ) LORI = LD

C .......... MAIN LOOP ..........

DO 260 K = L, NA

-- NOTLAS = K .NE. NA .AND. ISH .EQ. 2

K1 = K + 1

K2 = K + 2
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-C

C

i

C

--C

170

180

190

200

210

C

C

220

KMI = MAX0(K-I,L)

LL = MIN0 (EN,KI+ISH)

IF (NOTLAS) GO TO 190

.......... ZERO A (K+I, K-I) ..........

IF (K .EQ. L) GO TO 170

A1 = A(K,KMI)

A2 = A(KI,KMI)

S = ABS(AI) + ABS(A2)

IF (S .EQ. O.0E0) GO TO 70

U1 = A1 / S

U2 = A2 / S

R = SIGN(SQRT(UI*UI+U2*U2) ,UI)

vl = -(ul + R) / R
V2 = -U2 / R
U2 = V2 / Vl

DO 180 J = KMI, ENORN

T = A(K,J) + U2 * A(KI,J)

A(K,J) = A(K,J) + T * V1

A(KI,J) = A(KI,J) + T * V2

T = B(K,J) + U2 * B(KI,J)

B(K,J) = B(K,J) + T * V1

B(KI,J) = S(Ki,J) + T * V2

CONTINUE

IF (K .NE. L) A(KI,KMI) = 0.OEO

GO TO 240

.......... ZERO A(K+I,K-I) AND A(K+2,K-I)

IF (K .EQ. L) GO TO 200

A1 = A(K,KMI)

A2 = A(KI,KMI)

A3 = A(K2,KMI)

S = ABS(AI) + ABS(A2) + ABS(A3)

IF (S .EQ. o.omo) GO TO 260

u1 = AI / s
U2 = A2 / S

U3 = A3 / S

R = SIGN (SQRT (UI*UI+U2*U2+U3*U3) ,Ul)

V1 = -(Ul + R) / R

V2 = -U2 / R

V3 = -U3 / R

U2 = V2 / Vl

u3 = v3 / vl

DO 210 J = KMI, ENORN

T = A(K,J) + U2 * A(KI,J) + U3 * A(K2,J)

A(K,J) = A(K,J) + T * Vl

A(KI,J) = A(KI,J) + T * V2

A(K2,J) = A(K2,J) + T * V3

T = B(K,J) + U2 * B(KI,J) + U3 * B(K2,J)

B(K,J) = B(K,J) + T * Vl

B(KI,J) = B(KI,J) + T * V2

B(K2,J) = B(K2,J) + T * V3

CONTINUE

IF (K .EQ. L) GO TO 220

A(KI,KMI) = 0.OE0

A(K2,KMI) = 0.OE0
.......... ZERO B(K+2,K+I) AND B(K+2,K) ..........

S = ABS(B(K2,K2)) + ABS(B(K2,KI)) + ABS(B(K2,K))
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-- 230
C

C

235

C

240

C

IF (S .EQ. 0.0E0) GO TO 240

Ul = B(K2,K2) / S

U2 = B(K2,KI) / S

U3 = B(K2,K) / S
R = SIGN (SQRT (UI*UI+U2*U2+U3*U3) ,UI)

vl = -(ul + R) / R
V2 = -U2 / R

V3 =-U3 / R

u2 = v2 / vl
u3 = v3 / vl

DO 230 I = LORI, LL
T = A(I,K2) + U2 * A(I,KI) + U3 * A(I,K)

A(I,K2) = A(I,K2) + T * V1

A(I,KI) = A(I,KI) + T * V2

A(I,K) = A(I,K) + T * V3
T = B(I,K2) + U2 * B(I,KI) + U3 * B(I,K)

B(I,K2) = B(I,K2) + T * Vl

B(I,K1) = B(I,KI) + T * V2

B(I,K) = B(I,K) + T * V3

CONTINUE

B(K2,K) = 0.0E0

B(K2,KI) = 0.0E0

IF (.NOT. MATZ) GO TO 240

DO 235 I = I, N
T = Z(I,K2) + U2 * Z(I,KI) + U3 * Z(I,K)

Z(I,K2) = Z(I,K2) + T * V1

Z(I,KI) = Z(I,KI) + T * V2

Z(I,K) = Z(I,K) + T * V3
CONTINUE

• ZERO B (K+I, K) ......

IF (S .EQ. 0.0E0) GO TO 260

Ul = B(KI,KI) / S

U2 = B(KI,K) / S

R = SIGN(SQRT(UI*UI+U2*U2) ,UI)

V1 = -(UI + R) / R

v2 = -u2 / R
U2 = V2 / V1

250

DO 250 I = LORI, LL
T = A(I,KI) + U2 * A(I,K)

A(I,KI) = A(I,KI) + T * Vl

A(I,K) = A(I,K) + T * V2
T = B(I,KI) + U2 * B(I,K)

B(I,KI) = B(I,KI) + T * V1

B(I,K) = B(I,K) + T * V2

CONTINUE

B(KI,K) = 0.0E0
IF (-NOT" MATZ) GO TO 260

255

DO 255 I = i, N

T = Z(I,KI) + U2 * Z(I,K)

Z(I,KI) = Z(I,Kl) + T * V1

z(I,K) = Z(I,K) + T * V2
CONTINUE
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C**

C

C

_C

-- 260 CONTINUE

C .......... END QZ STEP ..........

GO TO 70

--C .......... SET ERROR -- ALL EIGENVALUES HAVE NOT

C CONVERGED AFTER 30*N ITERATIONS ..........

i000 IERR = EN

C .......... SAVE EPSB FOR USE BY QZVAL AND QZVEC ..........

i001 IF (N .ST. i) B(N,I) = EPSB

RETURN

THIS PROGRAM VALID ON FTN4 AND FTN5 **

END

ROUTINE NAME - PF262=QZVAL

FROM EISPACK

C ....... mmi_mmmm_mmmwmm_g_mummm_mq

C

C

C

C

C

--C

C

C

C

C

C

C

--C

C

C

-C

C

C

C

C

C

C

--C

C

C

_C

C

C

C

C

C

C

-C

C

C

C

C

C

C

C

C

--C

C

C

LATEST REVISION - AUGUST 1,1984

COMPUTER SCIENCES CORP., HAMPTON, VA.

PURPOSE - THIS SUBROUTINE ACCEPTS A PAIR OF REAL

MATRICES, ONE OF THEM IN QUASI-TRIANGULAR

FORM AND THE OTHER IN UPPER TRIANGULAR FORM.

IT REDUCES THE QUASI-TRIANGULAR MATRIX

FURTHER, SO THAT ANY REMAINING 2-BY-2 BLOCKS

CORRESPOND TO PAIRS OF COMPLEX EIGENVALUES,

AND RETURNS QUANTITIES WHOSE RATIOS GIVE THE

GENERALIZED EIGENVALUES. IT IS USUALLY

PRECEDED BY QZHES(PF260) AND QZIT(PF261) AND

MAY BE FOLLOWED BY QZVEC(PF263).

USAGE

ARGUMENTS NM

N

A

B

- CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z)

- ON INPUT NM MUST BE SET TO THE ROW DIMENSION

OF TWO-DIMENSIONAL ARRAY PARAMETERS AS

DECLARED IN THE CALLING PROGRAM DIMENSION

STATEMENT.

- ON INPUT N IS THE ORDER OF THE MATRICES.

- ON INPUT A CONTAINS A REAL UPPER QUASI-

TRIANGULAR MATRIX.

MUST BE OF DIMENSION NM X N.

ON OUTPUT A HAS BEEN REDUCED FURTHER TO A

QUASI-TRIANGULAR MATRIX IN WHICH ALL NONZERO

SUBDIAGONAL ELEMENTS CORRESPOND TO PAIRS OF

COMPLEX EIGENVALUES.

- ON INPUT B CONTAINS A REAL UPPER TRIANGULAR

MATRIX.

MUST BE OF DIMENSION NM X N.

IN ADDITION, LOCATION B(N,I) CONTAINS THE

TOLERANCE QUANTITY (EPSB) COMPUTED AND SAVED

IN QZIT(PF261).
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EISP7113

EISP7114

EISP7115

EISP7116

EISP7117

EISP7118

EISP7119

EISP7120

EISP7121

EISP7122

QZVAL 2

QZVAL 3

QZVAL 4

QZVAL 5

QZVAL 6

QZVAL 7

QZVAL 8

QZVAL 9

QZVAL i0

QZVAL ii

QZVAL 12

QZVAL 13

QZVAL 14

QZVAL 15

QZVAL 16

QZVAL 17

QZVAL 18

QZVAL 19

QZVAL 20

QZVAL 21

QZVAL 22

QZVAL 23

QZVAL 24

QZVAL 25

QZVAL 26

QZVAL 27

QZVAL 28

QZVAL 29

QZVAL 30

QZVAL 31

QZVAL 32

QZVAL 33

QZVAL 34

QZVAL 35

QZVAL 36

QZVAL 37

QZVAL 38

QZVAL 39

QZVAL 40

QZVAL 41

QZVAL 42

QZVAL 43

QZVAL 44

QZVAL 45

QZVAL 46

QZVAL 47

ON OUTPUT B IS STILL IN UPPER TRIANGULAR QZVAL 48

FORM, ALTHOUGH ITS ELEMENTS HAVE BEEN ALTERED.QZVAL 49

B(N,I) IS UNALTERED. QZVAL 50



--C
C
C

--C
C
C
C
C
C
C

-C
C
C

_C
C
C
C
C
C
C

-C
C
C

_C
C
C
C

--C
C
C

-C
C

C
C

-C
C

C

C
C

-C
C

C

C
C

-C
C

ALFR

ALFI

BETA

MATZ

Z

REQUIREDROUTINES

REMARKS 1.

- ON OUTPUTALFR CONTAINS THE REAL PART OF THE
DIAGONAL ELEMENTSOF THE TRIANGULARMATRIX
THAT WOULDBE OBTAINED IF A WEREREDUCED
COMPLETELYTO TRIANGULAR FORMBY UNITARY
TRANSFORMATIONS. NON-ZEROVALUES OF ALFI

QZVAL 51
QZVAL 52
QZVAL 53
QZVAL 54
QZVAL 55
QZVAL 56
QZVAL 57

OCCURIN PAIRS, THE FIRST MEMBERPOSITIVE AND QZVAL 58
THE SECONDNEGATIVE. QZVAL 59
MUST BE OF DIMENSION N. QZVAL 60

QZVAL 61
- ON OUTPUTALFI CONTAINS THE IMAGINARY PART QZVAL 62

OF THE DIAGONAL ELEMENTSOF OF THE TRIANGULAR QZVAL 63
MATRIX THAT WOULDBE OBTAINED IF A WERE
REDUCEDCOMPLETELYTO TRIANGULAR FORMBY
UNITARY TRANSFORMATIONS. NON-ZEROVALUES
OF ALFI OCCURIN PAIRS, THE FIRST MEMBER
POSITIVE AND THE SECONDNEGATIVE.
MUST BE OF DIMENSION N.

- ON INPUT MATZ SHOULDBE SET TO .TRUE. IF
THE RIGHT HAND TRANSFORMATIONSARE TO BE
ACCUMULATEDFOR LATER USE IN COMPUTING
EIGENVECTORS,AND TO .FALSE. OTHERWISE.

QZVAL 64
QZVAL 65
QZVAL 66
QZVAL 67
QZVAL 68
QZVAL 69
QZVAL 70

- ON OUTPUTBETA CONTAINS THE DIAGONAL ELEMENTSQZVAL 71
OF THE CORRESPONDINGB, NORMALIZEDTO BE REAL QZVAL 72
AND NON-NEGATIVE. THE GENERALIZED EIGENVALUESQZVAL73
ARE THEN THE RATIOS ((ALFR+I*ALFI)/BETA). QZVAL 74
MUST BE OF DIMENSION N. QZVAL 75

QZVAL 76
QZVAL 77
QZVAL 78
QZVAL 79
QZVAL 80
QZVAL 81
QZVAL 82

- ON INPUT Z CONTAINS, IF MATZ HAS BEEN SET QZVAL 83
TO .TRUE., THE TRANSFORMATIONMATRIX PRODUCEDQZVAL 84
IN THE REDUCTIONSBY QZHES(PF260) AND QZIT
(PF261) IF PERFORMED,OR ELSE THE IDENTITY
MATRIX. IF MATZ HAS BEEN SET TO .FALSE., Z
IS NOT REFERENCED.
MUST BE OF DIMENSION NM X N.

ON OUTPUTZ CONTAINS THE PRODUCTOF THE
RIGHT HAND TRANSFORMATIONS(FOR ALL THREE
STEPS) IF MATZ HAS BEEN SET TO .TRUE.

- NONE

THIS SUBROUTINEIS THE THIRD STEP OF THE QZ
ALGORITHMFOR SOLVING GENERALIZEDMATRIX
EIGENVALUE PROBLEMS, SIAM J. NUMER. ANAL. i0,
241-256(1973) BY MOLERAND STEWART.

EXAMPLE :
PROGRAMTQZVAL(OUTPUT,TAPE6=OUTPUT)
DIMENSION A(5,5),B(5,5),ALFR(5),ALFI(5),BETA(5),Z(5,5)
LOGICAL MATZ

N = 5
NM= 5
MATZ = .TRUE.
EPSI = 0.0E0

QZVAL 85
QZVAL 86
QZVAL 87
QZVAL 88
QZVAL 89
QZVAL 90
QZVAL 91
QZVAL 92
QZVAL 93
QZVAL 94
QZVAL 95
QZVAL 96
QZVAL 97
QZVAL 98
QZVAL 99
QZVALIO0
QZVALI01
QZVALI02
QZVALI03
QZVALI04
QZVALI05
QZVALI06
QZVALI07
QZVALI08
QZVALI09
QZVALII0



-C
C

C

-C

C

C

C

C

C

C

---C

C

C99

_CIO0

C

C

C

--C

C

C

--C

C

C

_C
C

C

C

--C

C

C

--C

C

C

C

C

C

DATA A /10.,2.,3.,2"1.,2.,12.,1.,2.,1.,3.,1.,11.,

* 1.,-1.,1.,2.,1.,9.,3"1.,-1.,1.,15. /

DATA B /12.,1.,-1.,2.,2"1.,14.,1.,-1.,1.,-1.,1.,

* 16.,-1.,1.,2.,-1.,-1.,12.,-1.,3"1.,-1.,11.

CALL QZHES(NM,N,A,B,MATZ,Z)

CALL QZIT(NM,N,A,B,EPSI,MATZ,Z,IERR)

CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z)

WRITE(6,99) IERR

WRITE(6,100) ALFR,ALFI,BETA, ((Z(I,J),I=I,5),J=I,5)

FORMAT(IHI,8H IERR = ,I4)

FORMAT(IH ,8H ALFR = /IH ,5(G8.2,2X)/

* 8H ALFI = /IH ,5(G8.2,2X)/

* 8H BETA = /IH ,5(G8.2,2X)/

* 5H Z = /5(IH ,5(G8.2,2X)/))

STOP

END

OUTPUT :

IERR = 0

ALFR =

15. 7.2 16. i0. 8.6

ALFI =

0. O. O. O. 0.

BETA =

9.9 17. 14. ii. 13.

Z =

•24 -.54E-01 .21 -.27 -.91

-.54 .25 .65 -.46 .13

•49 .56 .49 .45 .75E-01

-.60 .48 -.29 .44 -.38

-.25 -.63 .45 .57 -.94E-01

------------------------------------ ............ ---- ......... ------------------------

-- SUBROUTINE QZVAL(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z)
C

C

C

C

410

implicit real*8 (a-h,o-z)

INTEGER I,J,N,EN,NA,NM,NN,ISW

REAL*8 A(NM,N),B(NM,N),ALFR(N),ALFI(N),BETA(N),Z(NM,N)

REAL*8 C,D,E,R,S,T,AN,AI,A2,BN,CQ,CZ,DI,DR,EI,TI,TR,UI,

X U2,Vl,V2,AII,AII,AI2,A2I,A21,A22,BII,BI2,B22,SQI,SQR,

X SSI,SSR, SZI,SZR,AIII,AIIR,AI2I,AI2R,A22I,A22R,EPSB

LOGICAL MATZ

EPSB = B(N,I)

ISW = 1

.......... FIND EIGENVALUES OF QUASI-TRIANGULAR MATRICES.

FOR EN=N STEP -i UNTIL 1 DO -- . .........

DO 510 NN = i, N

EN = N + 1 - NN

NA = EN - 1

IF (ISW .EQ. 2) GO TO 505

IF (EN .EQ. I) GO TO 410

IF (A(EN,NA) .NE. O.OEO) GO TO 420

.......... I-BY-1 BLOCK, ONE REAL ROOT ..........

ALFR(EN) = A(EN,EN)

IF (B(EN,EN) .LT. 0.0E0) ALFR(EN) =-ALFR(EN)

BETA(EN) = ABS(B(EN,EN))

QZVALIII

QZVALII2

QZVALII3

QZVALII4

QZVALII5

QZVALII6

QZVALII7

QZVALII8

QZVALII9

QZVALI20

QZVALI21

QZVALI22

QZVALI23

QZVALI24

QZVALI25

QZVALI26

QZVALI27

QZVALI28

QZVALI29

QZVALI30

QZVALI31

QZVALI32

QZVALI33

QZVALI34

QZVALI35

QZVALI36

QZVALI37

QZVALI38

QZVALI39

QZVALI40

QZVALI41

QZVALI42

QZVALI43

QZVALI44

QZVALI45

QZVALI46

QZVALI47

EISP7123

EISP7124

EISP7125

EISP7126

EISP7127

EISP7128

EISP7129

EISP7130

EISP7131

EISP7132

EISP7133

EISP7134

EISP7135

EISP7136

EISP7137

EISP7138

EISP7139

EISP7140

EISP7141

EISP7142

EISP7143

EISP7144



ALFI(EN) = 0.0E0
GO TO 510

C ... 2-BY-2 BLOCK ..........
420 .LE.EPSS)GO TO 4SS

IF (ABS(B(EN,EN)) .GT. EPSB) GO TO 430

A1 = A(EN,EN)

A2 = A(EN,NA)

BN = 0.0E0

GO TO 435

430 AN = ABS(A(NA,NA)) + ABS(A(NA,EN)) + ABS(A(EN,NA))

X + ABS(A(EN,EN) )
BN = ABS(B(NA,NA)) + ABS(B(NA,EN)) + ABS(B(EN,EN))

All = A(NA,NA) / AN

AI2 = A(NA,EN) / AN

A21 = A(EN,NA) / AN

A22 = A(EN,EN) / AN

BII = B(NA,NA) / BN

BI2 = B(NA,EN) / BN

B22 = B(EN,EN) / BN

E = All / BII

EI = A22 / B22

S = A21 / (BII * B22)

T = (A22 - E * B22) / B22

IF (ASS(E) .LE. ABS(EI)) GO TO 431

E = EI

T = (All - E * BII) / BII

431 C = 0.5E0 * (T - S * BI2)

-- D = C * C + S * (AI2 - E * BI2)

IF (D .LT. 0.0E0) GO TO 480

C .......... TWO REAL ROOTS.
--C ZERO BOTH A(EN,NA) AND B(EN,NA) ..........

E = E + (C + SIGN(SQRT(D),C))

All = All - E * BII

AI2 = AI2 - E * BI2

-- A22 = A22 - E * B22

IF (ASS(All) + ASS(A12) .LT.

X ASS(A21) + ASS(A22)) GO TO 432

-- A1 = AI2

A2 = All

GO TO 435

_ 432 A1 = A22

A2 = A21

c caoosEAND APPLYREAL Z ..........
435 s -- BS(AI)+ ASS(A2)

-- Ul = A1 / S

U2 = A2 / S

R = SIGN(SQRT(UI*UI+U2*U2) ,UI)

-- Vl = -(UI + R) / R

v2 = -u2 / R
U2 = V2 / V1

_C

440

DO 440 I = i, EN

T = A(I,EN) + U2 * A(I,NA)

A(I,EN) = A(I,EN) + T * V1

A(I,NA) = A(I,NA) + T * V2

T = B(I,EN) + U2 * B(I,NA)

B(I,EN) = B(I,EN) + T * Vl

B(I,NA) = B(I,NA) + T * V2

CONTINUE
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445
C

45O

455

C

C

C

IF (.NOT. MATZ) GO TO 450

DO 445 I = i, N
T = Z(I,EN) + U2 * Z(I,NA)
Z(I,EN) = Z(I,EN) + T * V1
Z(I,NA) = Z(I,NA) + T * V2

CONTINUE

IF (BN .EQ. 0.0E0) GO TO 475
IF (AN .LT. ABS(E) * BN) GO TO 455
A1 = B(NA,NA)
A2 = B(EN,NA)
GO TO 460
A1 = A(NA,NA)
A2 = A(EN,NA)

CHOOSE AND APPLY REAL Q ..........

460 S (AI) + ABS(A2)

IF (S .EQ. 0.0E0) GO TO 475

ul = AI / S
U2 = A2 / S
R = SIGN(SQRT(UI*UI+U2*U2),UI)

vx = -(ux + R) / R
V2 = -U2 / R
U2 = V2 / Vl

470

DO 470 J = NA, N

T = A(NA,J) + U2 * A(EN,J)

A(NA,J) = A(NA,J) + T * V1

A(EN,J) = A(EN,J) + T * V2

T = B(NA,J) + U2 * B(EN,J)

B(NA,J) = B(NA,J) + T * Vl

B(EN,J) = B(EN,J) + T * V2

CONTINUE

475 A(EN,NA) = 0.0E0

B(EN,NA) = 0.0E0

ALFR(NA) = A(NA,NA)

-- ALFR(EN) = A(EN,EN)
IF (B(NA,NA) .LT. 0.0E0) ALFR(NA) = -ALFR(NA)

IF (B(EN,EN) .LT. 0.0E0) ALFR(EN) = -ALFR(EN)

_ BETA(NA) = ABS(B(NA,NA) )

BETA(EN) = ABS (B(EN,EN))

ALFI(EN) = 0.0E0

ALFI(NA) = 0.0E0

-- GO TO 505

c ........TWOCOMPLEXROOTS..........
480 : E C

-- EI = SQRT(-D)

AIIR = All - E * BII

AIII = EI * BII

AI2R = AI2 - E * BI2

-- AI2I = EI * BI2

A22R = A22 - E * B22

A22I = EI * B22

-- IF (ABS(AIIR) + ABS(AIII) + ABS(AI2R) + ABS(AI2I) .LT.

X ABS(A21) + ABS(A22R) + ABS(A22I)) GO TO 482

A1 = AI2R

-- AII= AI2I

A2 = -AIIR

A2I = -AIII
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C

--C

w

C

_C

482

485

487

490

492

495

497

500

X

502

X

503

GO TO 485

A1 = A22R

AII= A22I

A2 = -A21

A2I = O.0E0

.......... CHOOSE COMPLEX Z ..........

CZ = SQRT(AI*AI+AII*AII)

IF (CZ .EQ. 0.0E0) GO TO 487

SZR = (AI * A2 +AII * A2I) / CZ

SZI = (AI * A2I -AII * A2) / CZ

R = SQRT(CZ*CZ+SZR*SZR+SZI*SZI)

CZ = CZ / R

SZR = SZR / R
SZI = SZI / R

GO TO 490

SZR = 1.0E0

SZI = 0.0E0

IF (AN .LT. (ABS(E) + EI) * BN) GO TO 492

A1 = CZ * BII + SZR * BI2

AII= SZI * BI2

A2 = SZR * B22

A2I = SZI * B22

GO TO 495

A1 = CZ * All + SZR * AI2

AII= SZI * AI2

A2 = CZ * A21 + SZR * A22

A2I = SZI * A22

.......... CHOOSE COMPLEX Q ..........

CQ = SQRT(AI*AI+AII*AII)

IF (CQ .EQ. O.0E0) GO TO 497

SQR = (AI * A2 +AII * A2I) / CQ

SQI = (AI * A2I -AII * A2) / CQ

R = SQRT(CQ*CQ+SQR*SQR+SQI*SQI)

CQ = CQ / R

SQR = SQR / R

SQI = SQI / R
GO TO 500

SQR = 1.0E0

SQI = O.0E0

.......... COMPUTE DIAGONAL ELEMENTS THAT WOULD RESULT

IF TRANSFORMATIONS WERE APPLIED ..........

SSR = SQR * SZR + SQI * SZI

SSI = SQR * SZI - SQI * SZR

I = 1

TR = CQ * CZ * All + CQ * SZR * AI2 + SQR * CZ * A21

+ SSR * A22

TI = CQ * SZI * AI2 - SQI * CZ * A21 + SSI * A22

DR = CQ * CZ * BII + CQ * SZR * BI2 + SSR * B22

DI = CQ * SZI * BI2 + SSI * B22

GO TO 5O3

I = 2

TR = SSR * All - SQR * CZ * AI2 - CQ * SZR * A21

+ CQ * CZ * A22

TI = -SSI * All - SQI * CZ * AI2 + CQ * SZI * A21

DR = SSR * BII - SQR * CZ * BI2 + CQ * CZ * B22

DI = -SSI * BII - SQI * CZ * BI2

T = TI * DR - TR * DI

J = NA

IF (T .LT. 0.0E0) J = EN

R = SQRT(DR*DR+DI*DI)
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C

BETA(J) = BN * R
ALFR(J) = AN * (TR * DR + TI * DI) / R

ALFI(J) = AN * T / R

IF (I .EQ. i) GO TO 502

505 ISW = 3 - ISW

510 CONTINUE

B(N,I) = EPSB

C**

C

C

--C

RETURN

THIS PROGRAM VALID ON FTN4 AND FTN5 **

END

ROUTINE NAME - PF263=QZVEC

FROM EISPACK

LATEST REVISION

PURPOSE

NM

N

A

B

ALFR

C

C

--C

C

C

_C

C

C

C

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

--C

C

C

C

--C

C

C

_C

C

C

_C

C

C

C

--C

C

C

-C

C

C

USAGE

ARGUMENTS

EISP7325

EISP7326

EISP7327

EISP7328

EISP7329

EISP7330

EISP7331

EISP7332

EISP7333

EISP7334

EISP7335

QZVEC 2

QZVEC 3

QZVEC 4

QZVEC 5

- AUGUST 1,1984

COMPUTER SCIENCES CORP., HAMPTON, VA.

- THIS SUBROUTINE ACCEPTS A PAIR OF REAL

MATRICES, ONE OF THEM IN QUASI-TRIANGULAR

FORM (IN WHICH EACH 2-BY-2 BLOCK CORRESPONDS

TO A PAIR OF COMPLEX EIGENVALUES) AND THE

OTHER IN UPPER TRIANGULAR FORM. IT COMPUTES

THE EIGENVECTORS OF THE TRIANGULAR PROBLEM

AND TRANSFORMS THE RESULTS BACK TO THE

ORIGINAL COORDINATE SYSTEM. IT IS USUALLY

PRECEDED BY QZNES(PF260), QZIT(PF261), AND

QZVAL(PF262).

- CALL QZVEC(NM,N,A,B,ALFR,ALFI,BETA,Z)

- ON INPUT NM MUST BE SET TO THE ROW DIMENSION

OF TWO-DIMENSIONALARRAY PARAMETERS AS

DECLARED IN THE CALLING PROGRAM DIMENSION

STATEMENT.

- ON INPUT N IS THE ORDER OF THE MATRICES.

- ON INPUT A CONTAINS A REAL UPPER QUASI-

TRIANGULAR MATRIX.

MUST BE OF DIMENSION NM X N.

QZVEC 6

QZVEC 7

QZVEC 8

QZVEC 9

QZVEC i0

QZVEC Ii

QZVEC 12

QZVEC 13

QZVEC 14

QZVEC 15

QZVEC 16

QZVEC 17

QZVEC 18

QZVEC 19

QZVEC 20

QZVEC 21

QZVEC 22

QZVEC 23

QZVEC 24

QZVEC 25

QZVEC 26

QZVEC 27

QZVEC 28

QZVEC 29

QZVEC 30

QZVEC 31

QZVEC 32

QZVEC 33

QZVEC 34

QZVEC 35

- ON OUTPUT A IS UNALTERED. ITS SUBDIAGONAL QZVEC 36

ELEMENTS PROVIDE INFORMATION ABOUT THE STORAGEQZVEC 37

OF THE COMPLEX EIGENVECTORS. QZVEC 38

QZVEC 39

- ON INPUT B CONTAINS A REAL UPPER TRIANGULAR QZVEC 40

MATRIX. IN ADDITION, LOCATION B(N,I) CONTAINSQZVEC 41

THE TOLERANCE QUANTITY (EPSB) COMPUTED AND

SAVED IN QZIT(PF261).

MUST BE OF DIMENSION NM X N.

ON OUTPUT B HAS BEEN DESTROYED.

- ON INPUT ALFR IS A VECTOR SUCH THAT THE

RATIOS ((ALFR+I*ALFI)/BETA) ARE THE

GENERALIZED EIGENVALUES. THEY ARE USUALLY

QZVEC 42

QZVEC 43

QZVEC 44

QZVEC 45

QZVEC 46

QZVEC 47

QZVEC 48

QZVEC 49

QZVEC 50



-C
C
C

-C

C

C

C

C

C

C

--C

C

C

--C

C

C

C

-C

C

C

--C

C

C

_C

C

C

C

--C

C

C

_'C

C

C

_C
C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

ALFI

BETA

REQUIRED ROUTINES

REMARKS 1.

OBTAINED FROM QZVAL(PF262). QZVEC 51

MUST BE OF DIMENSION N. QZVEC 52

QZVEC 53

- ON INPUT ALFI IS A VECTOR SUCH THAT THE RATIOSQZVEC 54

((ALFR+I*ALFI)/BETA) ARE THE GENERALIZED QZVEC 55

EIGENVALUES. THEY ARE USUALLY OBTAINED FROM QZVEC 56

QZVAL(PF262). QZVEC 57

MUST BE OF DIMENSION N. QZVEC 58

QZVEC 59

- ON INPUT BETA IS A VECTOR SUCH THAT THE RATIOSQZVEC 60

((ALFR+I*ALFI)/BETA) ARE THE GENERALIZED QZVEC 61

EIGENVALUES. THEY ARE USUALLY OBTAINED FROM QZVEC 62

QZVAL(PF262). QZVEC 63

MUST BE OF DIMENSION N. QZVEC 64

QZVEC 65

- ON INPUT Z CONTAINS THE TRANSFORMATION MATRIX QZVEC 66

PRODUCED IN THE REDUCTIONS BY QZHES(PF260), QZVEC 67

QZIT(PF261), AND QZVAL(PF262), IF PERFORMED. QZVEC 68

IF THE EIGENVECTORS OF THE TRIANGULAR PROBLEM QZVEC 69

ARE DESIRED, Z MUST CONTAIN THE IDENTITY

MATRIX.

MUST BE OF DIMENSION NM X N.

QZVEC 70

QZVEC 71

QZVEC 72

QZVEC 73

QZVEC 74

QZVEC 75

ON OUTPUT Z CONTAINS THE REAL AND IMAGINARY

PARTS OF THE EIGENVECTORS. IF ALFI(I) .EQ.

0.0, THE I-TH EIGENVALUE IS REAL AND THE I-TH QZVEC 76

COLUMN OF Z CONTAINS ITS EIGENVECTOR. IF QZVEC 77

ALFI(I) .NE. 0.0, THE I-TH EIGENVALUE IS QZVEC 78

COMPLEX. IF ALFI(I) .GT. 0.0, THE EIGENVALUE QZVEC 79

IS THE FIRST OF A COMPLEX PAIR AND THE I-TH QZVEC 80

AND (I+I)-TH COLUMNS OF Z CONTAIN ITS EIGEN- QZVEC 81

VECTOR. IF ALFI(I) .LT. 0.0, THE EIGEN- QZVEC 82

VALUE IS THE SECOND OF A COMPLEX PAIR AND THEQZVEC 83

(I-I)-TH AND I-TH COLUMNS OF Z CONTAIN THE QZVEC 84

CONJUGATE OF ITS EIGENVECTOR. EACH EIGEN- QZVEC 85

VECTOR IS NORMALIZED SO THAT THE MODULUS

OF ITS LARGEST COMPONENT IS 1.0 .

- NONE

THIS SUBROUTINE IS THE OPTIONAL FOURTH STEP

OF THE QZ ALGORITHM FOR SOLVING GENERALIZED

MATRIX EIGENVALUE PROBLEMS, SIAM J. NUMER.

ANAL. i0, 241-256(1973) BY MOLER AND STEWART.

EXAMPLE :

PROGRAM TQZVEC(OUTPUT,TAPE6=OUTPUT)

DIMENSION A(5,5),B(5,5),ALFR(5),ALFI(5),BETA(5),Z(5,5)
LOGICAL MATZ

N = 5

NM = 5

MATZ = .TRUE.

EPSI = 0.0E0

DATA A /10.,2.,3.,2,1.,2.,12.,1.,2.,1.,3.,1.,11.,

* 1.,-1.,1.,2.,1.,9.,3,1.,-1.,1.,15. /

DATA B /12.,1.,-1.,2.,2,1.,14.,1.,-1.,1.,-1.,1.,

QZVEC 86

QZVEC 87

QZVEC 88

QZVEC 89

QZVEC 90

QZVEC 91

QZVEC 92

QZVEC 93

QZVEC 94

QZVEC 95

QZVEC 96

QZVEC 97

QZVEC 98

QZVEC 99

QZVECI00

QZVECI01

QZVECI02

QZVECI03

QZVECI04

QZVECI05

QZVECI06

QZVECI07

QZVECI08

QZVECI09

QZVECII0



C *

C

C

C

C

C

C

C99

CIO0

--C

C

C

_C OUTPUT :

C

C IERR =

C Z =

_C .26

C -.85

C 1.0

-C -i. 0

C -.45

C

CALL QZHES(NM,N,A,B,MATZ,Z)

CALL QZIT(NM,N,A,B,EPSI,MATZ,Z,IERR)

CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z)

CALL QZVEC(NM,N,A,B,ALFR,ALFI,BETA, Z)

WRITE(6,99) IERR

WRITE (6, i00) ( (Z (I,J) ,I=l, 5) ,J=l, 5)

FORMAT(IHI,7HIERR = ,I4)

FORMAT(5H Z = /5(IH ,5(G8.2,2X)/))

STOP

END

0

-.59E-01 .23 -.30

.39 1.0 -.69

1.0 .85 .88

•83 -.39 .72

-.84 .65 1.0

-i.0

.26

.54E-01

-.46

-. 19E-01

QZVECIII

QZVEClI2

QZVECII3

QZVECII4

QZVEClI5

QZVECII6

QZVECII7

QZVECII8

QZVECII9

QZVECI20

QZVECI21

QZVECI22

QZVECI23

QZVECI24

QZVECI25

QZVECI26

QZVECI27

QZVECI28

QZVECI29

QZVECI30

QZVECI31

QZVECI32

QZVECI33

QZVECI34

C

C

C

C

_C

C

SUBROUTINE QZVEC(NM,N,A,B,ALFR,ALFI,BETA,Z)

implicit real*8 (a-h,o-z)

INTEGER I,J,K,M,N,EN,II,JJ,NA,NM,NN,ISW,ENM2

REAL*8 A(NM,N),B(NM,N),ALFR(N),ALFI(N),BETA(N),Z(NM,N)

REAL*8 D,Q,R,S,T,W,X,Y,DI,DR,RA,RR,SA,TI,TR,TI,T2,WI,Xl,

X ZZ,ZI,ALFM,ALMI,ALMR,BETM,EPSB

EPSB = B(N,I)
ISW = 1

.......... FOR EN=N STEP -I UNTIL 1 DO

DO 800 NN = i, N

EN = N + 1 - NN

NA = EN - 1

IF (ISW .EQ. 2) GO TO 795

IF (ALFI(EN) .NE. 0.0E0) GO TO 710

.......... REAL VECTOR ..........

M = EN

B(EN,EN) = 1.0EO

IF (NA .EQ. 0) GO TO 800

ALFM = ALFR(M)

BETM = BETA(M)
.......... FOR I=EN-I STEP -i UNTIL 1 DO --

DO 700 II = i, NA

I = EN - II

W = BETM * A(I,I) - ALFM * B(I,I)
R = 0.0EO

II
• • • 0 0 0 " e 0 •

610

DO 610 J = M, EN

R = R + (BETM * A(I,J) - ALFM * B(I,J)) * B(J,EN)

630

IF (I .EQ.

IF (BETM *

ZZ = W

S = R

GO TO 690

M = I

1 .OR. ISW .EQ. 2) GO TO 630

A(I,I-I) .EQ. O.OE0) GO TO 630

EISP7336
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EISP7348

EISP7349
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EISP7351
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C

C

C

--C

C
C

--C

C

.w

C

C

640

650

690

700

710

760

770

IF (ISW .EQ. 2) GO TO 640

.......... REAL I-BY-1 BLOCK ..........

T=W

IF (W .EQ. 0.0E0) T = EPSB

B(I,EN) = -R / T

GO TO 700

.......... REAL 2-BY-2 BLOCK ..........

X = BETM * A(I,I+I) - ALFM * B(I,I+I)

Y = BETM * A(I+I,I)

Q=W* ZZ - X* Y

T = (X * S - ZZ * R) / Q

B(I,EN) = T

IF (ABS(X) .LE. ABS(ZZ)) GO TO 650

B(I+I,EN) = (-R - W * T) / X
GO TO 690

B(I+I,EN) = (-S - Y * T) / ZZ

ISW = 3 - ISW

CONTINUE

.......... END REAL VECTOR ..........

GO TO 800

.......... COMPLEX VECTOR ..........

M = NA

ALMR = ALFR (M)

ALMI = ALFI (M)

BETM = BETA(M)
.......... LAST VECTOR COMPONENT CHOSEN IMAGINARY SO THAT

EIGENVECTOR MATRIX IS TRIANGULAR ..........

Y = BETM * A(EN,NA)

B(NA,NA) = -ALMI * B(EN, EN) / Y

B(NA,EN) = (ALMR * B(EN,EN) - BETM * A(EN,EN)) / Y

B(EN,NA) = 0.0E0

B(EN,EN) = 1.0E0
ENM2 = NA- 1

IF (ENM2 .EQ. 0) GO TO 795
.......... FOR I=EN-2 STEP -i UNTIL 1 DO -- . .........

DO 790 II = i, ENM2
I = NA- II

W = BETM * A(I,I) - ALMR * B(I,I)

Wl = -ALMI * B(I,I)

RA = 0.0E0

SA = 0.0E0

DO 760 J = M, EN

X = BETM * A(I,J) - ALMR * B(I,J)

Xl = -ALMI * B(I,J)

RA = RA + X * B(J,NA) - Xl * B(J,EN)

SA = SA + X * B(J,EN) + Xl * B(J,NA)

CONTINUE

IF (I .EQ. 1 .OR. ISW .EQ. 2) GO TO 770

IF (BETM * A(I,I-I) .EQ. 0.0E0) GO TO 770

ZZ = W

Zl = W1

R = RA

S = SA

ISW = 2

GO TO 790

M = I

IF (ISW .EQ. 2) GO TO 780

.......... COMPLEX I-BY-1 BLOCK ..........
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773

TR = -RA
TI = -SA
DR = W
DI = Wl

C .......... COMPLEXDIVIDE (TI,T2) = (TR,TI) / (DR,DI) ..........

775 IF (ABS(DI) .GT. ABS(DR)) GO TO 777

RR = DI / DR
D = DR + DI * RR

T1 = (TR + TI * RR) / D

T2 = (TI - TR * RR) / D

- GO TO (787,782), ISW
CALL GOTOER

777 RR = DR / DI

_ D = DR * RR + DI

T1 = (TR * RR + TI) / D

T2 = (TI * RR - TR) / D

GO TO (787,782), ISW

CALL GOTOER

C .......... COMPLEX 2-BY-2 BLOCK ..........

780 X = BETM * A(I,I+I) - ALMR * B(I,I+I)

Xl = -ALMI * B(I,I+I)

Y = BETM * A(I+I,I)
TR = Y * RA - W * R + W1 * S

TI = Y * SA - W * S - W1 * R

DR = W * ZZ - W1 * Z1 - X * Y

DI = W * Zl + Wl * ZZ - Xl * Y

IF (DR .EQ. 0.0E0 .AND. DI .EQ. 0.0E0) DR = EPSB
-- GO TO 775

782 B(I+I,NA) = T1

B(I+I,EN) = T2
ISW = 1

IF (ABS(Y) .ST. ABS(W) + ABS(WI)) GO TO 785

TR = -RA - X * B(I+I,NA) + Xl * B(I+I,EN)

TI = -SA - X * B(I+I,EN) - Xl * B(I+I,NA)

GO TO 773

785 T1 = (-R - ZZ * B(I+I,NA) + Z1 * B(I+I,EN)) / Y

T2 = (-S - ZZ * B(I+I,EN) - Z1 * B(I+I,NA)) / Y

- 787 B(I,NA) = T1

B(I,EN) = T2

790 CONTINUE

_C .......... END COMPLEX VECTOR ..........

795 ISW = 3 - ISW

800 CONTINUE

C .......... END BACK SUBSTITUTION.

--C TRANSFORM TO ORIGINAL COORDINATE SYSTEM.

C FOR J=N STEP -i UNTIL 1 DO -- . .........

DO 880 JJ = i, N

J = N + 1 - JJF

C

C

C

DO 880 I = i, N

ZZ = O.0EO

860

DO 860 K = i, J

ZZ = ZZ + Z(I,K) * B(K,J)

Z(I,J) = ZZ

880 CONTINUE

--C .......... NORMALIZE SO THAT MODULUS OF LARGEST

C COMPONENT OF EACH VECTOR IS i.

C (ISW IS 1 INITIALLY FROM BEFORE) ..........
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C

890

C

900

C

_C

920

X

930

-C

C

w

C

C

C

C

940

DO 950 J = i, N
D = 0.0E0

IF (ISW .EQ. 2) GO TO 920

IF (ALFI(J) .NE. O.0E0) GO TO 945

DO 890 I = i, N

IF (ABS(Z(I,J))

CONTINUE

DO 900 I = i, N

Z(I,J) = Z(I,J) / D

GO TO 950

.GT. D) D = ABS(Z(I,J))

DO 930 I = i, N

R = ABS(Z(I,J-I)) + ABS(Z(I,J))

IF (R .NE. O.OE0) R = R * SQRT((Z(I,J-I)/R)**2

+ (Z (I, J)/R) *'2)

IF (R .GT. D) D = R
CONTINUE

DO 940 I = i, N

Z(I,J-I) = Z(I,J-I) / D

Z(I,J) = Z(I,J) / D

CONTINUE

945 ISW = 3 - ISW

950 CONTINUE

RETURN

END

ROUTINE NAME

FROM EISPACK

- PF266=RGG

EISP7491

EISP7492

EISP7493

EISP7494

EISP7495

EISP7496

EISP7497

EISP7498

EISP7499

EISP7500

EISP7501

EISP7502

EISP7503

EISP7504

EISP7505

EISP7506

EISP7507

EISP7508

EISP7509

EISP7510

EISP7511

EISP7512

EISP7513

EISP7514

EISP7515

EISP7516

EISP7517

EISP7518

EISP7519

EISP7520

EISP7521

RGG 2

RGG 3

RGG 4

RGG 5

C

C

_C

C

C

_C

C

C

C

C

C

C

--C

C

C

_C

C

C

C

C

C

C

--C

C

C

LATEST REVISION

PURPOSE

USAGE

ARGUMENTS NM

N

A

- AUGUST 1,1984

COMPUTER SCIENCES CORP., HAMPTON, VA.

- THIS SUBROUTINE CALLS THE RECOMMENDED

SEQUENCE OF SUBROUTINES FROM THE EIGENSYSTEM

SUBROUTINE PACKAGE (EISPACK) TO FIND THE

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

EIGENVALUES AND EIGENVECTORS (IF DESIRED) FOR RGG
THE REAL GENERAL GENERALIZED EIGENPROBLEM AX RGG

= (LAMBDA)BX. RGG
RGG

RGG

- CALL RGG(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z,IERR) RGG

RGG

- ON INPUT NM MUST BE SET TO THE ROW DIMENSION

OF THE TWO-DIMENSIONALARRAY PARAMETERS AS

DECLARED IN THE CALLING PROGRAM DIMENSION

STATEMENT.

- ON INPUT N IS THE ORDER OF THE MATRICES A

AND B.

- ON INPUT A CONTAINS A REAL GENERAL MATRIX.

MUST BE OF DIMENSION NM X N.

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O



-C
C
C

-C
C
C
C
C
C
C
C

C

C

_C

C

C

C

--C

C

C

--C

C

C

_C
C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

_C

C

C

C

C

C

C

--C

C

C

_C

C

C

C

-C

C

C

-C

C

C

B

ALFR

ALFI

BETA

MATZ

IERR

REQUIRED ROUTINES

REMARKS 1.

•

- ON INPUT B CONTAINS A REAL GENERAL MATRIX.

MUST BE OF DIMENSION NM X N.

- ON OUTPUT ALFR CONTAINS THE REAL PART OF THE

NUMERATORS OF THE EIGENVALUES.

MUST BE OF DIMENSION N.

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

- ON OUTPUT ALFI CONTAINS THE IMAGINARY PART OF RGG

THE NUMERATORS OF THE EIGENVALUES. RGG

MUST BE OF DIMENSION N. RGG

RGG

RGG

RGG

RGG

- ON OUTPUT BETA CONTAINS THE DENOMINATORS OF

THE EIGENVALUES, WHICH ARE THUS GIVEN

BY THE RATIOS (ALFR+I*ALFI)/BETA.

COMPLEX CONJUGATE PAIRS OF EIGENVALUES APPEAR RGG

CONSECUTIVELY WITH THE EIGENVALUE RGG

HAVING THE POSITIVE IMAGINARY PART FIRST. RGG

MUST BE OF DIMENSION N. RGG

RGG

- ON INPUT MATZ IS AN INTEGER VARIABLE SET EQUALRGG

TO ZERO IF ONLY EIGENVALUES ARE RGG

DESIRED. OTHERWISE IT IS SET TO RGG

ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND RGG

EIGENVECTORS. RGG
RGG

- ON OUTPUT Z CONTAINS THE REAL AND IMAGINARY RGG

PARTS OF THE EIGENVECTORS IF MATZ IS NOT RGG

ZERO. IF THE J-TH EIGENVALUE IS REAL, THE RGG

J-TH COLUMN OF Z CONTAINS ITS RGG

EIGENVECTOR. IF THE J-TH RGG

EIGENVALUE IS COMPLEX WITH POSITIVE IMAGINARY RGG

PART, THE J-TH AND (J+I)-TH

COLUMNS OF Z CONTAIN THE REAL AND

IMAGINARY PARTS OF ITS EIGENVECTOR. THE

CONJUGATE OF THIS VECTOR IS THE

EIGENVECTOR FOR THE CONJUGATE EIGENVALUE.

MUST BE OF DIMENSION NM X N.

- ON OUTPUT IERR IS AN INTEGER OUTPUT VARIABLE

SET EQUAL TO AN ERROR COMPLETION CODE

DESCRIBED IN THE DOCUMENTATION FOR QZIT

PF261). THE NORMAL COMPLETION CODE IS ZERO.

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

RGG

- PF260=QZHES,PF261=QZIT,PF262=QZVAL,PF263=QZVECRGG

HC318=EPSLON RGG

RGG

RGG

RGG

RGG

RGG

SUBROUTINE RGG IS A DRIVER ROUTINE WHICH CALLS ROUTINESRGG

QZHES(PF260), QZIT(PF261), QZVAL(PF262), AND RGG

QZVEC(PF263). RGG
RGG

QZHES(PF260) ACCEPTS A PAIR OF REAL GENERAL MATRICESRGG

AND REDUCES ONE OF THEM TO UPPER HESSENBERG FORM ANDRGG

THE OTHER TO UPPER TRIANGULAR FORM USING ORTHOGONALRGG

TRANSFORMATIONS. RGG

REFERENCES

FROM THE EISPACK PACKAGE OF EIGENSYSTEM ROUTINES.
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EXAMPLE :

RGG

QZIT(PF261) ACCEPTS A PAIR OF REAL MATRICES, ONE OFRGG

THEM IN UPPER HESSENBERG FORM AND THE OTHER IN UPPERRGG

TRIANGULAR FORM. IT REDUCES THE HESSENBERG MATRIX TORGG

QUASI-TRIANGULAR FORM USING ORTHOGONAL TRANSFORMATIONSRGG
WHILE MAINTAINING THE TRIANGULAR FORM OF THE OTHERRGG

MATRIX. RGG

RGG

QZVAL(PF262) ACCEPTS A PAIR OF REAL MATRICES, ONE OFRGG

THEM IN QUASI-TRIANGULAR FORM AND THE OTHER IN UPPERRGG

TRIANGULAR FORM. IT REDUCES THE QUASI-TRIANGULARRGG

MATRIX FURTHER, SO THAT ANY REMAINING 2-BY-2 BLOCKSRGG

CORRESPOND TO PAIRS OF COMPLEX EIGENVALUES, AND RETURNSRGG

QUANTITIES WHOSE RATIOS GIVE THE GENERALIZEDRGG

EIGENVALUES. RGG

RGG

QZVEC(PF263) ACCEPTS A PAIR OF REAL MATRICES, ONE OFRGG

THEM IN QUASI-TRIANGULAR FORM (IN WHICH EACH 2-BY-2RGG

BLOCK CORRESPONDS TO A PAIR OF COMPLEX EIGENVALUES) ANDRGG

THE OTHER IN UPPER TRIANGULAR FORM. IT COMPUTES THERGG

EIGENVECTORS OF THE TRIANGULAR PROBLEM AND TRANSFORMSRGG

THE RESULTS BACK TO THE ORIGINAL COORDINATE SYSTEM. RGG

PROGRAM TRGG(OUTPUT,TAPE6=OUTPUT)

DIMENSION A(5,5),B(5,5),ALFR(5),ALFI(5),BETA(5),Z(5,5)

N = 5

NM = 5

MATZ = 1

DATA A /10.,2.,3.,2"1.,2.,12.,1.,2.,1.,3.,1.,11.,

* 1.,-1.,1.,2.,1.,9.,3"1.,-1.,1.,15. /

DATA B /12.,1.,-1.,2.,2"1.,14.,1.,-1.,1.,-1.,1.,

* 16. ,-i. ,i. ,2. ,-i. ,-i. ,12. ,-I. ,3"1. ,-i. ,II.

CALL RGG(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z,IERR)

WRITE (6,99) IERR

WRITE(6,100) ALFR,ALFI,BETA, ((Z(I,J),I=I,5) ,J=l,5)

FORMAT(IHI,7HIERR = ,I4)

FORMAT(IH0,7HALFR = /IH ,5(G8.2,2X)/

* 8HOALFI = /IH ,5(G8.2,2X)/

* 8HOBETA = /IH ,5(G8.2,2X)/

, 5Hoz = /5(1H ,5(GS.2,2X)/))
STOP

END

OUTPUT :

IERR = 0

ALFR =

15. 7.2 16. i0. 8.6

ALFI =

0. 0. 0. 0. 0.
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--C BETA
C 9.9
C Z=

-C .26
C -.85
C 1.0
C -I.0
C -.45
C

17. 14. ii. 13.

-.59E-01 .23 -.30 -I.0
.39 1.0 -.69 .26
1.0 .85 .88 .54E-01
.83 -.39 .72 -.46

-.84 .65 1.0 -.19E-01

C
SUBROUTINEdiverg(NM,N,A,B,ALFR,ALFI,BETA,MATZ,Z,IERR)

implicit real*8 (a-h,o-z)
INTEGER N,NM, IERR,MATZ
REAL*8 A(NM,N),B(NM,N),ALFR(N),ALFI(N),BETA(N),Z(NM,N)
LOGICAL TF
zero = 0.0e+O0
IF (N .LE. NM) GO TO I0
IERR = I0 * N
GO TO 50

--C
I0 IF (MATZ .NE. 0) GO TO 20

C .......... FIND EIGENVALUES ONLY ..........

TF = .FALSE.

CALL QZHES(NM,N,A,B,TF,Z)

CALL QZIT(NM,N,A,B,zero ,TF, Z,IERR)

CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,TF,Z)

GO TO 50

C .......... FIND BOTH EIGENVALUES AND EIGENVECTORS ..........

20 TF = .TRUE.

-- CALL QZHES(NM,N,A,B,TF,Z)

CALL QZIT(NM,N,A,B,zero ,TF,Z,IERR)

CALL QZVAL(NM,N,A,B,ALFR,ALFI,BETA,TF, Z)

_ IF (IERR .NE. 0) GO TO 50

CALL QZVEC(NM,N,A,B,ALFR,ALFI,BETA, Z)

50 RETURN

C** THIS PROGRAM VALID ON FTN4 AND FTN5 **

-- END

subroutine gotoer

write (6, I0)

-- i0 format('there is an error in calculating subroutine')

return

end

c
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